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NSF (N-ethylmaleimide-sensitive factor) is an adenosine triphosphatase (ATPase) that 
contributes to a protein complex essential for membrane fusion. The synaptic function 
of this protein was investigated by injecting, into the giant presynaptic terminal of squid, 
peptides that inhibit the ATPase activity of NSF stimulated by the soluble NSF attachment 
protein (SNAP). These peptides reduced the amount and slowed the kinetics of neu- 
rotransmitter release as a. result of actions that required vesicle turnover and occurred 
at a step subsequent to vesicle docking. These results define NSF as an essential 
participant in synaptic vesicle exocytosis that regulates the kinetics of neurotransmitter 
release and, thereby, the integrative properties of synapses. 

Information transfer between neurons de- 
pends on the amount and duration of syn- 
aptic transmitter release. Although many 
processes are known to regulate the 
amount of neurotransmitter released (I), 
the molecular mechanisms responsible for 
determining the time course of transmitter 
release are unknown (2). For example, 
none of the various proteins implicated in 
neurotransmitter release (3) has been as- 
signed a role in regulating release kinet- 
ics-in part, because most analyses of 
these proteins have been performed under 
steady-state conditions in vitro. We have 
now studied an intact synapse in order to 
evaluate the phvsiological role of the cv- 

of protein-protein interaction, on the ba- 
sis of which six peptides (Fig. 1B) were 
synthesized and tested for their ability to 
interfere with NSF function. 

Two of the peptides, NSF-2 and NSF-3, 
markedly (>50%) inhibited neurotrans- 
mitter release when injected into the 
squid giant presynaptic terminal (Fig. 2, 
A, B, and D) (8, 9). NSF-1 inhibited 
release to a lesser extent (33 + 7%; 
mean 2 SEM, n = lo), whereas NSF-4, 
NSF-5, or NSF-6 reduced synaptic trans- 
mission by <5% when injected at concen- 
trations similar to or higher than those of 
the active peptides. The inhibitory effects 

of NSF-2 and NSF-3 were apparent within 
minutes of the onset of the injection, 
reached a maximum soon after injection 
ceased, and were completely reversible 
(Fig. 2, B and D). Because recovery paral- 
leled the loss of coinjected fluorescent 
dextran (Fig. 2D), it was probably the 
result of diffusion of the peptide out of the 
synaptic terminal (8). 

A peptide (scNSF-2) with an amino 
acid composition identical to that of NSF- 
2, but with a scrambled sequence, had no 
effect on transmitter release (Fig. 2C). 
Moreover, replacing the central glycine of 
NSF-3 by glutamate yielded a peptide 
(comNSF-3) that was inactive even at 
concentrations higher than those of 
NSF-3 required to inhibit synaptic trans- 
mission completely (Fig. 2D). These two 
results indicate that NSF-2 and NSF-3 act 
in a sequence-specific manner, and, thus, 
that their effects reflect an action related 
to NSF. A point mutation in the comatose 
gene causes a change in the sequence of 
Drosophifu NSF identical to that in 
comNSF-3 (10) and leads to impairment 
of synaptic transmission and paralysis 
(I I ). Our data indicate that this paralysis 
likely results from destabilization of a pro- 
tein-protein interaction required for trans- 
mitter release, rather than from inhibition 
of the many other processes that contrib- 
ute to synaptic transmission (I 1 ). 
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Dl region of the squid protein is -75% boxes indicate the Mg2+ binding 

identical to that of NSF proteins from 
mammals and Drosophifu, and 67% identi- 
cal to that of the yeast homolog, Secl8 
(Fig. 1A). Predictions of hydrophilicity, 
higher order structure, and evolutionary 
conservation of sequence motifs in squid 
NSF were used to identify potential sites 
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NSF-4: KYV GES EP.N VRR LFA EAE EE 
NSF-5: RKD LID EAL LRP GRL EVQ ME 
NSF-6: EL& ALT KNF SGA 5:E GLV R 

www.sciencemag.org SCIENCE VOL. 279 20 FEBRUARY 1998 1203 



tein) is required for the interaction of NSF 
with its membrane receptors, known as 
SNARES (SNAP receptors) (1 2), and reg- 
ulates the ATPase activity of NSF (13). 
Both NSF-2 and NSF-3 inhibited SNAP- 
stimulated ATP hydrolysis by NSF in vitro 
(14), whereas the mutant comNSF-3 pep- 
tide was inactive (Fig. 3A). The peptides 
inhibited SNAP-stimulated ATPase activ- 
ity at concentrations (Fig. 3B) similar to 
those that inhibit transmitter release (Fig. 
2D).: We also tested the responsiveness of 
postsynaptic receptors by photolysis of 
caged 'glutamate (15). Presynaptic injec- 
tion of NSF-2 had no effect on responses 

to photoreleased glutamate (Fig. 3C), 
showing that postsynaptic glutamate re- 
ceptors were unaffected by presynaptically 
injected NSF peptides. These results indi- 
cated that NSF and its regulation by 
SNAP are essential for neurotransmitter 
release. 

In addition to reducing the initial slope 
of excitatory postsynaptic potentials 
(EPSPs), NSF-2 and NSF-3 also appeared 
to prolong these responses, suggesting that 
they reduce not only the magnitude but 
also slow the kinetics of transmitter re- 
lease. We tested this possibility by volt- 
age-clamping the postsynaptic axon to 

Fig. 2. lnhibition of neu- 
rotransmitter release by A QmQL Recovelv 
NSF peptides. (A) Ex- 
amples of pre- and 
postsynaptic potentials 
recorded before, dur- 
ing, and 5 hours after 
NSF-3 injection (left, 
middle, and right pan- 
els, respectively). (B and 

& ! m V  

6 C 
C) lnhibition of transmit- - 
ter release by NSF-2 (B) 5 
but not by scrambled n 
NSF-2 (scNSF-2) (C). % 
Bars indicate duration $j 20 $j 20 

of peptide microinjec- b a w 
tion. (D) Dierential ef- o 
fects of injections of o 60 120 180 0 2 0 4 0 8 0 8 0  

NSF-3 (solid bar) and Time (min) Time (min) 
~ ~ N S F - 3  (open bar) D -- NSF 

termini as -timated by fluoresceme of coinjected 1 \ fluorescein-dextran. At 180 min, the injecton pi- 2 

comNSF-3 into the same presynaptic terminal (upper panel). 8 Lower panel indicates peptide concentration in the ,o , so 

pate was changed from one containing N S F - ~ . ~ O  '' 
another containing comNSF-3. o 
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Time (min) 

Fig. 3. lnhibion of SNAP- 
stimulated ATPase act* 
of NSF, but not of post- 
synaptic receptors, by 
NSF peptides. (A) Effect of 
peptides (1 mM) on 
SNAP-stimulated ATPase 
activity of NSF. Data are 
expressed as nanomoles 
or phosphate per hourcer 5 t& 2 I\ lWL 

mkrogran; of NSF and &e ,- 
1 1\- means -C SEM (n = 3). (B) F f 
0- Dose-dependent inhibi- 3 ,, 

0 5 1 0  80 120 
tion of SNAP-stimulated m - [NSF-21 (mM) Time (rntn) 
ATPase a c t i i  of NSF by 
NSF-2. Data are means a SEM (n = 3). (C) Postqnaptc responses to flash photolysis of caged glutamate 
immediately before (control) and at the end of (NSF-2) injection of NSF-2 (upper panel). Presynaptic injection 
of NSF-2 (bar) reduced the EPSP slope (lower panel) but had no effect on the glutamate response (middle 
panel). 

avoid the effects of voltagedependent 
conductances that obscure the EPSP time 
course. The resultant measurements of ex- 
citatory postsynaptic currents (EPSCs) re- 
vealed that NSF-2 and NSF-3 reduced the 
amount of transmitter release, as indicated 
by a decrease in both the amplitude and 
the integral of the EPSCs. In addition, 
both peptides increased the synaptic delay 
and markedly slowed both the onset and 
the decay of EPSCs (Fig. 4, A and B, Fig. 
5A, and Table 1) (16). Blockers of gluta- 
mate uptake affected neither the time 
course nor the amplitude of transmitter 
release (n = 3), making it unlikely that 
the peptides acted by altering the gluta- 
mate transient in the synaptic cleft (1 7). 
Such slowing of the EPSC is highly un- 
usual and was not simply a consequence of 
reduced transmitter release. For example, 
slowing was not observed with the other 
NSF peptides nor with any other manipu- 
lation that reduced EPSC amplitude (18- 
20), including injection of the synaptotag- 
min peptide Pep20 (8) (Fig. 4C), reducing 
the extracellular CaZ+ concentration (Fig. 
4D), or evoked synaptic depression by a 
high-frequency train of presynaptic action 
potentials (Fig. 5). On the basis of these 
results, as well as our observations that 
NSF peptides had no effect on postsynap- 
tic receptors (Fig. 3C) and that they pro- 
longed both the onset and the decay of the 
EPSC (Fig. 5), we conclude that NSF-2 
and NSF-3 alter EPSC kinetics by chang- 
ing the time course of transmitter release 
(2, 21). 

EPSC 

"p. 

Fig. 4. Effect of NSF peptides on the kinetics of 
transmitter release. Presynaptic potentials ( V A ,  
postsynaptic currents (EPSCs), and the same 
EPSCs 'scaled to identical peak amplitudes 
(scaled) are shown during injection of NSF-2 (A), 
NSF-3 (B), or synaptotagmin-derived Pep20 (C) 
or the lowering of the extracellular Ca2+ concen- 
tration (D). Stimulus artifact transients were 
blanked out and the smallest, scaled traces were 
additionally filtered. 
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NSF peptides might have influenced re- 
lease kinetics by altering Ca2+ entry into 
the terminal through presynaptic Ca2+ 
channels (22). However, voltage-clamp 
measurements of vresvnavtic CaZ+ currents 
indicated that tiis ;as ;lot the case (Fig. 
6A). On average. NSF-2 had no effect on 
the' amplitude & the time course of the 
presynaptic Ca2+ current (3.5 + 6.4% en- 
hancement of current measured at 6 ms, 
n = 7) while inhibiting (by 66 + 5%) and 
slowing (by 31 + 5%) the postsynaptic 
current. 

There are two plausible explanations 
for the ability of NSF peptides to influence 
release kinetics on the millisecond time 
scale without altering CaZ+ entry: These 
vevtides could act either bv directlv inter- 
iering with the fusion of docked iesicles 
(12) or bv slowine the fusion of vesicles . , c. 

indirectly by affecting a step that precedes 
(23, 24) or follows (25) fusion. Whereas 
the latter hypothesis predicts that NSF 
peptides will block transmitter release 
only after vesicle turnover depletes avail- 
able vesicles, the former predicts that in- 
hibition will be independent of vesicle 
turnover. We found that NSF-2 blocked 
synaptic transmission only when the syn- 
apse was active (Fig. 6B) (26). Thus, NSF 
appears to act at a step other than fusion, 
yet it regulates both the amount and the 
timine of neurotransmitter release. - 

Recent in vitro studies of yeast vac'uo- 
lar fusion suggest that NSF acts before 
vesicles dock (24). If the NSF peptides 
inhibit release by preventing docking, 

0 60 120 180 240 300 

Time (min) 

Fig. 5. Time courses of the physiological actions 
of NSF-3 injection (black bar) on EPSC ampli- 
tude (A), 20 to 80% rise time (B), and the time 
constant of a single-exponential function fit to 
EPSC decay (C). Arrow indicates responses to a 
train of presynaptic stimuli (1 Hz, 30 s), which 
reduced the amplitude of EPSCs without affect- 
ing their kinetics.. 

they should reduce the number of docked 
vesicles and induce the accumulation of 
upstream, nondocked vesicles. However, 
electron microscopy revealed the opposite 
effect. Terminals injected with NSF-2 
(Fig. 6D) exhibited an 18% increase in the 
number of docked vesicles (those located 
within 50 nm of the presynaptic plasma 
membrane) compared with control termi- 
nals (Fig. 6C). Thus, the peptides affected 
a step that follows vesicle docking but 
precedes vesicle fusion. The total number 
of vesicles was reduced by 46% in the 
terminals injected with NSF-2 (Fig. 6E), 

presumably because of a contribution of 
NSF-dependent reactions to the endocy- 
totic branch of the vesicle cycle (1 9). This 
decrease in the number of vesicles is not 
likely responsible for the changes in re- 
lease because the number of docked vesi- 
cles was increased, potentially providing 
more vesicles for rapid fusion. Further- 
more, other treatments that reduce the 
number of synaptic vesicles do not change 
release kinetics (19, 20). We suggest that 
the kinetic effect of the peptides is related 
to the role of NSF in exocytosis, even 
though this protein apparently acts during 

Table 1. Effects of experimental treatments on EPSC properties. EPSCs were measured before and at 
the peak of injection of the indicated peptides, or before and at the end of a presynaptic train of stimuli 
(1 Hz, 30 s). A slowing of 100% is equivalent to a doubling of the EPSC onset or decay time constants 
rdative to control. Data are means 2 SEM. 

Treatment 
No. of 

injections Amplitude Onset Decay 

(reversals) inhibition slowing slowing 
or trains (%I (%I 

No. of 
iniections Amplitude ?-':'!tion Onset Decay 

slowing slowing 
\ (%I 

NSF-1 10 (5) 33 * 7 3 2  2 9 ?  5 
NSF-2 56 (29) 72 ? 3 48 ? 5 110 * 14 
NSF-3 6 (5) 73 ? 8 54 2 27 97 2 36 
CO~NSF-3 4 20 ? 9 3 ?  8 8 2 5  
Pep20 3 (2) 69 2 13 6 2  6 24 ? 10 
Stimulus train 8 64 2 4 1 2 3  8 ?  3 

Control NSFQ Superimposed N 
v m  - 3 - ". 4 k r r Y ;  

- - 

'"7~ V 7 I t  , , .\,, -, 
1500 nA " 

2 rns 0 
0 10 20 30 40 

Time (min) 

Distance from membrane (nrn) 

Fig. 6. Site of action of NSF peptides. (A) Lack of effect of NSF peptides on Ca2+ currents. Presynaptic 
Ca2+ currents (I& (middle) and EPSCs (bottom) elicited by presynaptic depolarization [from a command 
potential ( V A  of -60 to -22 mV for 6 ms] (top) before (control) and during (NSF-2) injection of NSF-2. 
Traces are shown superimposed on the right. (B) Lack of effect of NSF-2 injection (black bar) on release 
when stimulation was intempted (shaded areas), indicating use-dependent inhibition. (C and D) Elec- 
tron micrographs of a control terminal injected with buffer only (C) and of a terminal injected with NSF-2 
that was fixed when the peptide had reduced EPSC amplitude by 91 % (D). (E) Distribution of synaptic 
vesicles per active zone (AZ) at increasing distance (shell size, 50 nm) from the presynaptic plasma 
membrane for control terminals (white bars, n = 520 AZs, three terminals injected with scNSF-2, NSF-4, 
or buffer only) and those injected with NSF-2 (black bars, n = 206 AZs, two terminals). 
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both endocytosis and exocytosis. 
Because NSF peptides both slow release 

kinetics and inhibit the ATPase activity 
of NSF, ATP hydrolysis likely results in 
conformational changes (25, 27) that ac- 
tivate SNARE proteins (28)  to promote 
membrane fusion in response to C a z +  en- 
try. Our results are consiste~lt with a role 
for NSF before f i ~ s i o ~ l  in a reaction anal- 
ogous to the ATP-dependent "priming" 
that precedes f ~ ~ s i o n  of docked vesicles in 
endocrine cells (23,  29, 30). Alternative- 
ly, the NSF peptides might retard vesicle 
fusion by preventing NSF from dissociat- 
ing SNARE complexes after fusion (25). 
However, regardless of when in the vesicle 
life cycle NSF exerts its action (or ac- 
tions), the consequences of this action are 
apparent during the membrane filsion re- 
action itself. T h e  kinetic changes induced 
by NSF peptides might result from slowi~lg 
of a reaction that causes each synaptic 
vesicle to fuse [for example, dilation of a 
fusion pore (3 1 ) ]  or from desy~lchro~liza- 
tion of i~ldividual vesicle filsio~l events 
(32). Desynchronizatio~l of vesicle f u s i o ~ ~  
could result from a reduction in the num- 
ber of fusogenic particles per vesicle, with 
inhibition occurring when the number of 
particles has been reduced to zero (33) .  
Incorporating such temporal control into 
the basic mechanism of tnembrane fusion 
provides an economical means of defining 
the rate of synaptic transmission and, 
thereby, the integrative properties of syn- 
apses (34) .  
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