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Uncoupling of Immune Complex Formation and
Kidney Damage in Autoimmune
Glomerulonephritis

Raphael Clynes, Calin Dumitru, Jeffrey V. Ravetch*

The generation of autoantibody and subsequent tissue deposition of immune complexes
(IC) is thought to trigger the pathogenic consequences of systemic autoimmune disease.
Modulation of the autoantibody response disrupts pathogenesis by preventing the for-
mation of ICs; however, uncoupling IC formation from subsequent inflammatory re-
sponses seems unlikely because of the apparent complexity of the IC-triggered inflam-
matory cascade. However, the disruption of a single gene, which encodes the vy chain
of the Fc receptor, was found to achieve this uncoupling in a spontaneous model of lupus
nephritis, the New Zealand Black/New Zealand White (NZB/NZW) mouse. Gamma
chain-deficient NZB/NZW mice generated and deposited IC and activated complement,
but were protected from severe nephritis, thus defining another potential pathway for
therapeutic intervention in autoimmune disease.

NZB mice develop autoantibodies and au-
toimmune hemolytic anemia, but show no
signs of glomerular disease until crossed to
the NZW background to generate NZB/
NZW (B/W F,) mice (I). A minimum of
three distinct genetic loci are required for
the manifestation of autoimmune glomeru-
lonephritis in the B/W F,, two derived from
NZB and one from NZW mice (2, 3). Sev-
eral features of this model are consistent
with lupus in humans. Females develop dis-
ease at a frequency 10 times that of males,
and IC and complement deposition in glo-
meruli are observed. Significant proteinuria
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is seen concomitant with the serological
appearance of antibodies to DNA as well as
ICs of the immunoglobulin G1 (IgG1),
[gG2a, and [gG2b subclasses beginning at 4
months (1). Median survival is 6 months,
with mortality resulting from renal failure.
Several studies have demonstrated the es-
sential role of B cells (4) and autoantibodies
(5, 6) in disease development. Agents that
interfere with autoantibody production
have been shown to attenuate disease (7-
12). Disruption of the subsequent inflam-
matory response triggered by glomerular IC
deposition represents an alternative thera-
peutic approach, but success may be com-
plicated by the large number of possible
proinflammatory molecules presumed to be
activated by ICs, including complement
components and the cellular receptors for

shown are luciferase activities normalized to B-ga-
lactosidase activity.

25. M. Mller et al., EMBO J. 12, 4221 (1993).

26. B. J. Wagner, T. E. Hayes, C. J. Hoban, B. H. Coch-
ran, ibid. 9, 4477 (1990).

27. Single-letter abbreviations for the amino acid resi-
dues are as follows: A, Ala; G, Cys; D, Asp; E, Glu; F,
Phe; G, Gly; H, His; |, lle; K, Lys; L, Leu; M, Met; N,
Asn; P, Pro; Q, GIn; R, Arg; S, Ser; T, Thr; V, Val; W,
Trp; and Y, Tyr.

28. M. Carson, J. Appl. Crystallogr. 24, 958 (1991).

29. A. Nicholls, K. A. Sharp, B. Honig, Proteins Struct.
Funct. Genet. 11, 281 (1991).

30. T. A. Jones, J. Y. Zou, S. W. Cowan, M. Kjelgard,
Acta Crystallogr. A 47, 110 (1991).

31. A. T. Bringer, X-PLOR (Version 3.1) Manual, The
Howard Hughes Medical Institute and Department of
Molecular Biophysics and Biochemistry, Yale Univer-
sity (Yale Univ. Press, New Haven, CT 1992).

32. We thank H. Viguet and M. M. Allen for expert tech-
nical support, X. Zhu and C. M. Horvath for reagents,
and the staff at BNL, especially C. Ogata, for advice
in collecting MAD data. U.V. expresses special
thanks to C. Harrison and F. Sicheri for valuable and
generous help with DENZO and X-PLOR, and to
D. E. Drake for assistance with figures. Supported by
NIH grants Al34420 and Al32489 to J.E.D.

3 September 1997; accepted 10 December 1997

IgG. Complement depletion attenuates dis-
ease in several induced models of glomeru-
lonephritis (13, 14), and anti-C5a treat-
ment modulates glomerular injury in a
spontaneous murine model (15). However,
the primacy of complement activation in
IC-triggered inflammation has been ques-
tioned by several recent genetic studies
(16-20).

In the classical model of IC-triggered
inflammation, the Arthus reaction, the
demonstration that FcyRs are essential
whereas complement is not (16-20) sug-
gests that the fundamental assumption of
the pathogenesis of autoimmune glomeru-
lonephritis as being mediated by comple-
ment activation (13, 21-27) requires re-
evaluation. Such studies have been facili-
tated by the availability of defined murine
strains deficient in components of this
pathway. Mouse strain y~/~, which is defi-
cient in the Fc receptor (FcR) vy chain, does
not express the activation receptors FcyRI
and FeyRIIl, but still bears the inhibitory
receptor FcyRIIB. To determine if the
spontaneous autoimmune glomerulonephri-
tis in the B/W F, required FcyRs for disease
development, NZB and NZW mice were
backcrossed for eight generations to the
v~/ mouse strain, and animals homozygous
or heterozygous for the disruption in the vy
chain were identified. We obtained y*/~
and y~/~ B/W F, animals and observed
them for evidence of autoimmune glomer-
ulonephritis. As reported (1), B/W F, ani-
mals have a median survival of 200 days,
succumbing to the sequelae of renal failure
(Fig. 1A). In contrast, v/~ B/W mice had
a prolonged survival, with 82% (20 of 22)
alive at 9 months. In B/W mice, the appear-
ance of proteinuria presages the onset of
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clinically severe disease, with mortality fol-
lowing within weeks. In contrast, y~/~
B/W animals have a delayed onset and a
reduced incidence of proteinuria (P <
0.00012) compared to their heterozygous
littermates (Fig. 1B). In addition, the onset
of proteinuria in the y~/~ B/W animals did
not correlate with mortality; y~/~ B/W an-
imals with significant proteinuria did not
progress to the sequelae of glomerulone-
phritis and renal failure (28).

To determine the molecular basis for
protection, Y™/~ and y*/~ B/W mice were
assayed for the presence of antibodies to
double-stranded DNA (dsDNA) and circu-
lating ICs (Table 1). No significant differ-
ences were seen in isotype, specificity, or
total immunoglobulin between these ani-
mals, indicating that the backcrossing had
transferred the B/W loci responsible for
autoantibody production. In addition, lack
of FcyRI and FeyRIII did not affect the
clearance of soluble ICs, with similar
steady-state levels of circulating complexes
seen in both genotypes. In contrast, clear-
ance of insoluble ICs—such as antibody-
coated red blood cells, platelets, or micro-
bial pathogens—is FcR-dependent (20, 29).
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Fig. 1. (A) y~/~ enhances B/W survival. Kaplan-
Meier cumulative proportion survival of y*/~ and
y~/~ B/W F, female mice (45). A total of 31 y~/~
and 39 y*/~ B/W F, mice were followed. Median
survival of y*/~ B/W mice was 200 * 7 days;
median survival of y=/~ B/W mice was 400 days.
Premorbid y*/~ B/W animals were uremic, ane-
mic, cachectic, and edematous. (B) Delayed on-
set and diminished severity of proteinuria in y=/~
B/W mice. Severe proteinuria (>5 mg/mi) (46) de-
veloped in all y*/~ B/W mice, with a median age
of onset of 188 + 11 days. In contrast, the disease
incidence, severity, and time of onset were atten-
uated in y~/~ B/W mice. Normalized data are
expressed as: total proteinuria = (incidence)
X (mean 24-hour urinary protein).
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Fig. 2. Glomerulonephri-
tis is blocked in y=/-
B/W  mice. Repre-
sentative renal glomeruli
(47) of C57B/6 vy~/-,
B/W 4=/, and B/W
y*/~ 7-month-old fe-
male mice (magnification
X400). Pathological fea-
tures of B/W y*/~ glo-
meruli include mesangial

B/W Y —/- B/W Y +/—

thickening and hypercellularity evolving into end-stage sclerotic and crescentic changes. C57BI/6
y~/~glomeruli demonstrate normal glomerular architecture, and B/W y~/~ glomeruli show relatively mild
mesangial thickening without concomitant inflammatory changes. Despite the development of mesan-
gial thickening in B/W y~/~ mice, there is little hypercellularity and no evidence of end-stage glomerular

changes.

Production of ICs in y~/~ B/W mice were
not expected to differ, because B and T cell
responses are normal in y~/~ mice (30, 32).

Glomerular samples taken from =/~
and y*/~ B/W mice were examined histo-
logically and by immunofluorescence. Ac-
tive glomerular disease was seen in the
vy*/~ B/W animals, including mesangial
thickening and hypercellularity evolving
into end-stage crescent formation and
sclerosis (Fig. 2). IC deposition was ob-
served in both genotypes, along with dep-
osition of complement C3. However, age-
matched Y=/~ B/W showed no evidence
of inflammatory disease; only mesangial
thickening was seen, indicative of IC dep-
osition revealed by immunofluorescence
(Fig. 3). Such deposition is seen only in
the B/W background, because y~/~ ani-
mals on a variety of backgrounds do not
generate or deposit IC or C3 in their
kidneys (33). Thus, despite the deposition
of ICs and C3 in the glomeruli of y=/~
B/W, the inflammatory response was un-
coupled, indicating that the presence of
FcyRs was required, and complement ac-

Table 1. Titers of ICs and antibodies to dsDNA for
y*~ and ¥~ mice. Results are expressed as a
percent of a pooled serum from 7-month-old B/W
female mice used to create a standard curve (48).
Means + SEM of two separate experiments of 21
heterozygous and 29 homozygous deficient fe-
male animals 6 to 7 months of age are shown.

Mouse strain
v v CS:_IBJ/S

Immune

complexes®* 84 +30 66*18 <1
Anti-dsDNA

Total IgG 109+24 98+ 12 <1

1gG1 92+21 165 +27 1

IgG2a 77 16 106 = 14 <1

IgG2b 10140 86+ 16 <1

1gG3 121 £ 24 146 = 23 1

IgM 143+19 114+ 11 <1

*Aggregated IgG was used as a positive control for C1q
binding.

tivation by ICs is not sufficient to initiate
an inflammatory cascade.

An induced model of IC-mediated glo-
merulonephritis done in vy ~/~-deficient
mice (34) confirmed our results. Rabbit an-
tibodies to glomerular basement membrane,
when passively transferred into wild-type
mice sensitized to rabbit IgG, developed an
acute glomerulonephritis. In the absence of
v chain, reduction in disease was seen.
Complement depletion with cobra venom
factor did not attenuate disease, supporting
the data shown in Fig. 3.

The likely receptor involved in IC trig-
gering is FcyRIIl, whose expression on mes-
angial cells may be essential for disease
initiation (35, 36). The similarities in se-
rum IC levels and deposition in y~/~ and
wild-type mice suggest that these receptors
have a minimal contribution to the clear-
ance of ICs, indicating that IC clearance is

‘;-FITC
iF.

B/W Y —/— BIW 7 +/—

Fig. 3. IC and complement deposition are similar
iny*/~ and y~/~ B/W mice. Immunohistochemi-
cal analysis (47) of kidneys from the animals
shown in Fig. 2. Both mice had comparable con-
centrations of circulating ICs and autoantibodies
to dsDNA; however, proteinuria was evident in the
v¥*/=, but not the y~/~ B/W mouse. Prominent
mesangial IgG and C3 staining is evident in B/W
mice of both genotypes.
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either mediated by FcyRII, complement re-
ceptors, or both. These divergent roles for
FcRs and complement in autoimmune dis-
ease offer an explanation for the apparent
paradox that deficiencies in complement in-
crease the risk of lupus (37, 38). The com-
plement system may regulate autoreactive B
cells (39) as well as contribute to IC clear-
ance, whereas FcyRIII mediates the inflam-
matory activation by ICs. Thus, deficiencies
in complement would result in an increase in
autoantibodies and a reduction of IC clear-
ance with a corresponding increase in IC
deposition, thereby increasing FcR-mediated
activation,~These studies and ours indicate
that complement and Fc receptors have
evolved for distinctly different roles in their
interaction with ICs. Complement has been
shown to be essential for innate immunity
against microbial pathogens, requiring natu-
ral antibodies to mediate their protective
effect (40, 42), whereas FcyRs have emerged
as the principal system for coupling antigen-
specific IgG antibodies to cellular effector
responses and play a minor role in host in-
nate immunity (29, 43, 44). Therefore, this
distinction argues for the development of
new therapeutic strategies based on FcR
blockade for the treatment of autoimmune
glomerulonephritis.
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The Minor Histocompatibility Antigen HA-1:
A Diallelic Gene with a Single Amino Acid
Polymorphism
Joke M. M. den Haan,” Leslie M. Meadows,” Wei Wang,*
Jos Pool,* Els Blokland, Tracie L. Bishop, Carla Reinhardus,

Jeffrey Shabanowitz, Rienk Offringa, Donald F. Hunt,
Victor H. Engelhard, Els Goulmy

The minor histocompatibility antigen (mHag) HA-1 is the only known mHag for which
mismatching is correlated with the development of severe graft versus host disease
(GvHD) after human leukocyte antigen-identical bone marrow transplantation. HA-1
was found to be a nonapeptide derived from an allele of the KIAA0223 gene. The
HA-1-negative allelic counterpart encoded by KIAA0223 had one amino acid differ-
ence from HA-1. Family analysis with HA-1 allele-specific polymerase chain reaction
showed an exact correlation between this allelic polymorphism and the HA-1 phe-
notype. HA-1 allele typing of donor and recipient should improve donor selection and
allow the determination of bone marrow transplantation recipients with high risk for

HA-1-induced GvHD development.

Bone marrow transplantation (BMT) is
the current treatment for hematologic ma-
lignancies, severe aplastic anemia, and im-
mune deficiency disease. A frequent and
life-threatening complication after allogen-
ic human leukocyte antigen (HLA )—identi-

cal BMT is GvHD (1). Disparities in genes
other than the major histocompatibility
complex (MHC), referred to as minor his-
tocompatibility antigens (mHags), are

clearly involved in the development of
GvHD. The mHags are recognized by T
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