REPORTS

Fission Yeast Slp1: An Effector of the Mad2-Dependent Spindle Checkpoint

Sang Hoon Kim, Diana P. Lin, Sanae Matsumoto, Ana Kitazono, Tomohiro Matsumoto*

Mad2 is a component of the spindle checkpoint, which delays the onset of anaphase until all chromosomes are attached to the spindle. Mad2 formed a complex with Slp1, a WD (tryptophan–aspartic acid)–repeat protein essential for the onset of anaphase. When the physical interaction between the two proteins was disrupted, the spindle checkpoint was no longer functional. Post-anaphase events such as chromosome decondensation and the next round of DNA replication were not delayed even when the spindle assembly was incomplete. This relief of dependence appears to be a result of deregulation of ubiquitindependent proteolysis mediated by the anaphase-promoting complex.

Duplicated chromosomes segregate equally in anaphase. The spindle checkpoint delays the onset of anaphase until all chromosomes are attached to the spindle (1) and prevents production of cells with missing or extra chromosomes. Mad2 is a component of the spindle checkpoint conserved in eukaryotes (2). It associates with unattached kinetochores and disappears as mitosis proceeds normally. Fission yeast Mad2 causes a metaphase arrest when it is overexpressed (3). Thus, Mad2 has a key function in a signaling pathway that delays the onset of anaphase in response to a spindle defect. However, the nature of this function has not yet been described.

The fission yeast slp1⁺ gene encodes a protein containing repeating units that often end with the sequence Trp-Asp (WD repeat). The $slp1^+$ gene is essential for cell growth, and a temperature-sensitive mutant (slp1-362) was arrested before anaphase (4). Slp1 is a member of a family of proteins that includes Fzy, Cdc20, p55CDC (5), Hct1/ Cdh1, and Fzr (6). Members of this family may function as regulators of the ubiquitindependent proteolysis during mitosis (6). We isolated the fission yeast Mad2 in the yeast two-hybrid system (7-9) with $slp1^+$ as bait. Slp1 and Mad2 interacted strongly and gave rise to histidine-prototrophic growth (Fig. 1A) and increased β -galactosidase (LacZ) enzymatic activity (Fig. 1B) in a specific manner. The physical interaction between the two proteins was confirmed with a fusion protein of glutathione-Stransferase with Slp1 (GST-Slp1), and Mad2 protein translated in vitro in the presence of ³⁵S-methionine (10). ³⁵S-labeled Mad2 bound to GST-Slp1, but not to GST (Fig. 1C). We generated a series of truncated Slp1 mutants and tested them for binding activity in the yeast two-hybrid system. F6, a 66-amino acid polypeptide, interacted with Mad2 (Fig. 1D). Deletion of 29 amino acids (Δ 118–146) resulted in a loss of the binding activity (Fig. 1D), suggesting that these amino acids are important for binding to Mad2.

Deletion of $mad2^+$ (11) (Fig. 2A) did not cause noticeable defects under normal growth conditions. The $cut7^+$ gene encodes a kinesin, and the cut7 mutant fails in interdigitating the mitotic spindles (12). The cut7 mutants arrest as septated cells with overcondensed chromosomes, implying that loss of $cut7^+$ is normally

Fig. 1. Binding of Mad2 to Slp1. (A and B) Yeast twohybrid system. A tester strain was transformed by the combination of plasmids as indicated. In the transformants with pGBT-slp1 and pGAD-mad2, two reporter genes, HIS3 and LacZ, were highly expressed. The specific activity of β-galactosidase (indicated as Miller units) was determined as described (22). Similar results were obtained in three independent experiments. (C) Binding of in vitro-translated mad2 gene product labeled by 35S (lane 1) to GST protein or a fusion protein, GST-Slp1, which were glutathionebound to Sepharose 4B beads. The proteins bound to GST (lane 2) or to GST-slp1 (lane 3) were separated by polyacrvlamide gel electrophoresis. (D) Each box represents a WD (Trp-Asp) repeat motif in Slp1. Truncatrecognized by the spindle checkpoint and results in a delay of chromosome decondensation. Therefore, $\Delta mad2$ was expected to abolish the metaphase arrest seen in the cut7 mutant at the restrictive temperature. Indeed, there was no indication of chromosome overcondensation in the double mutants, cut7 Δ mad2, over a period of 4.5 hours after the shift to the restrictive temperature (Fig. 2, C and D). Their nuclei appeared noncondensed and hemispheric. In the cut7 Δ mad2 mutants, the dependence of chromosome decondensation on formation of a mitotic spindle was relieved. In contrast, 3 hours after the shift, 60% of the cut7 single-mutant cells exhibited overcondensed chromosomes that appeared dense and fibrous. Most of the double-mutant cells contained nearly 4N DNA content 2 hours after the shift (Fig. 3), indicating that the double mutant can initiate the next round of DNA replication even when the spindle assembly is incomplete. Thus, the fission yeast mad2⁺ functions as a component of the spindle checkpoint. These results are consistent with the previous report (3).

Overexpression of $mad2^+$ causes a metaphase arrest (3), perhaps because Mad2 binds to Slp1 and inhibits its activity to promote the transition from metaphase to anaphase. We therefore generated and characterized an *slp1* mutant that is

ed Slp1 fragments are shown below. The tester strain was transformed with pGAD-mad2 and pGBT8 carrying each of the truncated $s/p1^+$ fragments. F6R bears F6 fragment in the reverse orientation. The transformants were streaked on the media containing (+) or lacking (-) histidine.

Departments of Radiation Oncology and Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.

^{*}To whom correspondence should be addressed.

resistant to the overproduction of Mad2. The domain of Slp1 important for binding to Mad2 (amino acid position 118 to 146) was mutagenized at random (13). Mutated *slp1* genes on an autonomously replicating plasmid were individually transformed

Fig. 2. Disruption of $mad2^+$ and loss of spindle checkpoint function. (A) The $mad2^+$ gene was disrupted as shown. Total RNAs prepared from Ura⁻ segregants (wild-type strains, lanes 2 and 4) and Ura⁺ segregants (mad2 disruptants, lanes 1 and 3) were analyzed by Northern blotting with the $mad2^+$ cDNA as a probe. Each lane contained a similar amount of RNA. (B) Sensitivity to thiabendazole. Cell suspension of a wild-type strain $\Delta mad2$ and two independent isolates of the s/p1-mr63 mutant were serially diluted and spotted on the complete media containing thiabendazole at the concentrations indicated. (C) Percentages of cells exhibiting overcondensed chromosomes after the shift to the restrictive temperature. (D) Microscopy of *cut7*, *cut7* $\Delta mad2$, and *cut7 slp1-mr63* at 3 hours after the shift. They were stained with 4,6-diamine-2-phenylindole (DAPI). Bar, 10 μ m.

into a wild-type strain with ADH-M2, a plasmid that allows the overexpression of mad2⁺ from the alcohol dehydrogenase (ADH) gene promoter. When yeast cells were transformed with the wild-type $slp1^+$ gene on the autonomously replicating plasmid and with ADH-M2, the transforming efficiency was lower than that obtained by cotransformation with ADH-2M, a plasmid bearing the $mad2^+$ gene in the reverse orientation. In cells expressing $mad2^+$ from the ADH promoter and $slp1^+$ on the autonomously replicating plasmid, Mad2 probably exists in excess over Slp1 and inhibits the growth of the transformants. Three slp1 mutants (slp1-mr27, 52, and 63) overcame the overexpression of mad2⁺. When they were expressed along with ADH-M2, the transformation efficiency was comparable to that obtained when they were expressed with ADH-2M. Nucleotide sequence analysis revealed that the $slp1^+$ gene was mutated similarly in all the mutants at Ala-131 and Phe-132 (Fig. 4A). One of the mutant slp1 genes, slp1-mr63, was used to replace a null allele of *slp1* in a diploid. The resulting heterozygous diploid (+/slp1-mr63) was resistant to the overexpression of $mad2^+$ (Fig. 4C), indicating that slp1-mr63 can overcome the overexpression of mad2+ in a dominant manner (14). The presence of slp1mr63 was determined by polymerase chain

Fig. 3 (left). Loss of the spindle checkpoint in *cut7* mutant. Fluorescence-activated cell sorter (FACS) analysis of samples taken every hour after the shift to the restrictive temperature. The vertical axes indicate cell counts, and the horizontal axes, DNA content. Fig. 4 (right). Isolation of *slp1-mr63*.
(A) Nucleotide and amino acid sequences of the region containing the mutation sites (Ala-131 and Phe-132). In the mutants, one of the Dra I sites (shown in parentheses) was disrupted. Dra I digestion of the PCR product yields 84-, 22-, and 112-bp fragments from a wild-type strain and 84- and 134-bp fragments from the mutant. Abbreviations for the amino acid residues are as follows: A, Ala; D, Asp; F, Phe; K, Lys; L, Leu; N, Asn; P, Pro; R,

Arg; T, Thr; V, Val; and Y, Tyr. (**B**) The region shown in (A) was amplified by PCR and analyzed on a 2.5% agarose gel after Dra I digestion. Templates for PCR were genomic DNAs isolated from the heterozygous diploid (+/s/p1-mr63, lane 1) and four segregants (lanes 2 to 5). The diploid yielded two wild-type strains (lanes 2 and 5) and two s/p1-mr63 mutants (lanes 3 and 4). (**C**) Growth of a wild-type diploid (+/+, top) and the heterozygous diploid (+/s/p1-mr63, lane 3), bottom). They were transformed with 0.5 μ g of ADH-2M (left) or ADH-M2 (right). (**D**) Growth of a wild-type haploid (top) and a haploid carrying the s/p1-mr63 mutation (bottom). They were transformed with 0.5 μ g of ADH-2M (left) or ADH-M2 (right).

blotting. Bacterially expressed Slp1 was run in lane 7. Multiple bands (lane 5) probably represent the degradation products of Slp1. These bands, as well as the band of the intact Slp1, became more intense when *slp1*⁺ was overexpressed. (**C**) Growth of the indicated strains transformed with pREP41-Mad2. The strains were streaked on minimum media (PMA) in the absence of thiamine to induce expression. (**D**) Growth of the indicated strains to induce expression. (**D**) Growth of the indicated strains to induce expression.

reaction (PCR) followed by digestion with Dra I (15) (Fig. 4, A and B). Among the four haploid segregants produced meiotically from the heterozygous diploid, the Mad2-resistant phenotype gene segregated with slp1-mr63 (Fig. 4D). These haploid cells grew normally, suggesting that slp1mr63 is otherwise biologically active.

The slp1-mr63 mutation abolished binding to Mad2 in the yeast two-hybrid system (Fig. 5A) and in vivo. Mutant Slp1 protein did not precipitate with GST-Mad2 in fission yeast cell extracts, whereas wild-type Slp1 did (16, 17) (Fig. 5B). We also made cells with both the slp1-mr63 and cut7 mutations. At the restrictive temperature, the double mutant (slp1-mr63 cut7) showed no delay of chromosome decondensation in response to the cut7-induced defect (Fig. 2D). Like $\Delta mad2$ cut7, the slp1-mr63 cut7 double mutant initiated the next round of DNA replication before the completion of the spindle assembly (Fig. 3). Furthermore, both Δ mad2 and slp1-mr63 were hypersensitive to thiabendazole, an inhibitor of the spindle assembly (Fig. 2B). The slp1-mr63 mutant behaved indistinguishably from $\Delta mad2$. These results indicate that Slp1 is the primary target of Mad2 and that slp1-mr63, defective in recognizing the signal from Mad2, abrogates the function of the spindle checkpoint.

Proteins with the destruction box, such as cyclins, Pds1, Cut2, and Ase1 (18), are degraded by ubiquitin-dependent proteolysis at anaphase. These proteins participate in regulating the timing of exit from mitosis or of initiation of sister chromatid separation. They are ubiquitinated by the anaphase-pro-

moting complex (APC), which exerts the driving force to initiate anaphase (19). Fission yeast $cut9^+$ (20) and $cut4^+$ (21) encode components of the APC. The cut9 and cut4 mutants are hypersensitive to overexpression of $mad2^+$. When $mad2^+$ is overexpressed in amounts not toxic to wild-type strains, these mutants are unable to grow at the permissive temperature (3) (Fig. 5C). Mad2 probably inhibits the activity of APC indirectly. The cut9 and cut4 mutants are no longer hypersensitive to the overexpression of $mad2^+$ in the background of slp1-mr63 (Fig. 5C). In addition, slp1-mr63, as well as $\Delta mad2$, partially suppressed the cut4 mutation. At the restrictive temperature, 36°C, the cut4 slp1mr63 mutant and cut4 Δ mad2 mutant formed colonies (Fig. 5D) at a relatively slow rate. Thus, loss of function of the spindle checkpoint appears to remove a negative constraint on APC. The cut9 mutant is synthetically lethal in the background of a recessive mutation, slp1-362 (4). Taken together, the genetic link between Mad2, Slp1, and APC suggests that the three components may act in a single sequential pathway. We propose that fission yeast Slp1 is the effector molecule that receives an anaphase-inhibitory signal from the Mad2-dependent spindle checkpoint.

REFERENCES AND NOTES

- A. W. Murray, *Curr. Opin. Genet. Dev.* 5, 5 (1995);
 W. A. E. Wells, *Trends Cell Biol.* 6, 228 (1996); R. B. Nicklas, *Science* 275, 632 (1997).
- R. Li and A. W. Murray, *Cell* **66**, 519 (1991); R.-H. Chen, J. C. Waters, E. D. Salmon, A. W. Murray, *Science* **274**, 242 (1996); Y. Li and R. Benezra, *ibid.*, p. 246.
- 3. X. He, T. E. Patterson, S. Sazer, Proc. Natl. Acad.

Sci. U.S.A. 94, 7965 (1997).

 T. Matsumoto, *Mol. Cell. Biol.* **17**, 742 (1997).
 N. Sethi, M. C. Monteaguro, D. Koshland, E. Hogan, D. Burke, D. *ibid.* **11**, 5592 (1991); I. A. Dawson, S. Roth, S. Artavanis-Tsakonas, *J. Cell Biol.* **129**, 725 (1995); S. Sigrist, H. Jacobs, R. Stratmann, C. F. Lehner, *EMBO J.* **14**, 4827 (1995); J. Weinstein,

REPORTS

- F. W. Jacobsen, J. Hsu-Chen, T. Wu, L. G. Baum, Mol. Cell. Biol. 14, 3350 (1994).
 S. J. Sigrist and C. F. Lehner. Cell 90, 671 (1997); M.
- S. J. Sigrist and C. F. Lehner, *Cell* **90**, 671 (1997); M. Schwab, A. S. Luturn, W. Seufert, *ibid.*, p. 683; R. Visintin, S. Prinz, A. Amon, *Science* **278**, 460 (1997).
 S. Fields and O. Song, *Nature* **340**, 245 (1989).
- H. E. Feilotter, G. J. Hannon, C. J. Ruddell, D. Beach, *Nucleic Acids Res.* 22, 1502 (1995).
- The NH₂-terminal 289 amino acids region of s/p1⁺ was used as bait. Among the ~5 × 10⁵ transformants screened, 12 were selected. The subsequent analysis of the cDNA inserts revealed that all inserts contain the coding region of the mad2⁺ gene.
- GST-Slp1 and GST were purified with the glutathione– Sepharose 4B beads (GSH) as recommended by the manufacturer (Pharmacia). An in vitro-translated Mad2 protein was obtained with the use of reticulocyte lysate (Promega).
- 11. The mad2⁺ gene was isolated from a fission yeast genomic DNA library, and the coding region was localized in 2.75 kb. An Sph I fragment containing the ura4⁺ gene was inserted between two Sph I sites that were generated at ~70 bp and 540 bp downstream of the putative translation initiation site of the gener.
- I. Hagan and M. Yanagida, *Nature* **347**, 563 (1990).
 A region of Slp1 (amino acid position 118 to 146) was subjected to site-directed mutagenesis with degenerate oligonucleotides. About 600 mutated *slp1* genes on an autonomously replicating plasmid (pSP1) were individually transformed into a tester strain (*h⁻ leu1-32 ura4-d18*) with ADH-M2. A detailed protocol will be available upon request.
- 14. ADH-2M yielded ~1000 transformants for both the wild-type and the heterozygous diploids. ADH-M2 yielded 10 to 20 transformants for the wild-type diploid. These transformants were either stable integrants or spontaneous mutants unable to express mad2⁺.
- A pair of oligonucleotides, GGGCATATGTTTGTA-AATTCTATCAGCAGTGACGTT and GGGCATAT-GAGTGTTAAAGCGTCGTTTAGCCGGTGT, were used for PCR.
- J. Leatherwood, A. Lopez-Girona, P. Russell, *Nature* 379, 360 (1996).
- 17. GST and GST-Mad2 were expressed and the binding assay was carried out as described (16).
- M. Glotzer, A. W. Murray, M. W. Kirschner, *Nature* 349, 132 (1991); A. Hershko, D. Ganoth, J. Pehrson, R. E. Palazzo, L. H. Cohen, *J. Biol. Chem.* 266, 4940 (1991); O. Cohen-Fix, J. Peters, M. W. Kirschner, D. Koshland, *Genes Dev.* 10, 3081 (1996); H. Funabiki et al., *Nature* 381, 438 (1996); Y.-L. Juang et al., *Science* 275, 1311 (1997).
- S. Imiger, S. Piatti, C. Michaelis, K. Nasmyth, Cell 81, 269 (1995); R. W. King et al., *ibid.*, p. 279; W. Zachariae, T. H. Shin, M. Galova, B. Obermaier, K. Nasmyth, Science 274, 1201 (1996); R. King, R. J. Deshaies, J. M. Peters, M. W. Kirschner, *ibid.*, p. 1652.
- 20. I. Samejima and M. Yanagida, J. Cell Biol. **127**, 1655 (1994).
- Y. M. Yamashita et al., Nature 384, 276 (1996).
 M. Rose and D. Botstein, Methods Enzymol. 101,
- 167 (1983). 23. We thank G. Hannon and D. Beach for the cDNA
- 23. We thank G. Hannon and D. Beach for the cDNA library for the yeast two-hybrid system, P. Russell for pJL205, M. Yanagida for cut mutants and criticism of the manuscript, A. W. Murray for criticism of the manuscript and for sharing unpublished results, and G. Grills and D. Gebhard for technical assistance. D.P.L. was a Medical Student Research Fellow of the Howard Hughes Medical Institute and is supported by a training grant from the National Institutes of Health (5T32GM07491). A.K. was supported by the Human Frontier Science Program. Supported by a grant from the National Institutes of Health (R01GM56305) to T.M.

3 October 1997; accepted 18 November 1997