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13. The ~mmunoblot analysis was done w t h  proten from 
adult bran w~ th  monoclonal antbod es to aCaMKll 
and synaptophysn (Boehrnger). The secondaly an- 
tbody was labeled w ~ t h  '"I Blots analyzed w~ th  an 
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Conjugative Transfer by the Virulence System 
of Legionella pneumophila 

Joseph. P. Vogel, Helene L. Andrews, Swee Kee Wong, 
Ralph R. Isberg* 

Legionella pneumophila, the causative agent of Legionnaires' pneumonia, replicates 
within alveolar macrophages by preventing phagosome-lysosome fusion. Here, a large 
number of mutants called dot (defective for organelle trafficking) that were unable to 
replicate intracellularly because of an inability of the bacteria to alter the endocytic 
pathway of macrophages were isolated. The dot virulence genes encoded a large 
putative membrane complex that functioned as a secretion system that was able to 
transfer plasmid DNA from one cell to another. 

A nrlmber of ~ntracellular bacterial patho- 
gens, stlch as Chlamydia trachomatis, Myco- 
bacterit~m tttberculosis, and Legionella pnett- 
mophila, grow withln membrane-bound 
compartments d ~ r ~ e r t e d  fro111 the  norlnal en- 
docytic pathway of host cells ( 1  ). Legionella 
pnettmophiln replicates ~v i th in  alveolar mac- 
rophages by preventing acid~ficatloll of the  
nascent phagosome and subsequent fuslo11 
with lysosomes (2) .  Several L .  pnettmophiln 
genes (dot4  and icmWXYZ) that are re- 
quired for gro~vth In macrophages have 
been identifled (3) .  lvlutations in these 
genes allow bacteria to be internalized ~ n t o  
compartments that fuse ~ v i t h  lysoso~nal 
components (3,  4). 

T o  tlnderstand how this o rga~ l i s~n  pre- 
vents phagosome-lysosome fusio11, we iso- 
lated a large collection of additional mu- 
tants that were defective for intracellular 
gro~vth. Twenty-six spontaneous mutants 
were isolated o n  the basis of the  ohservatioll 
that L .  pneumophila stralns resistant to  low 

J P. V o g e  H. L. Andrews, S. K Wong Department of 
Molecular Bioloav and M crob~oloav, Tufts Un~versitv 

amounts of sodi~un chloride are often un- 
able to replicate in  macrophages (5, 6) .  W e  
independently isolated six add~t ional  mu- 
tants by screening mutagenized L. pnetimo- 
phila for a lack of 111tracellular growth (7). 
Csmple lne~ l t a t io~ l  of these mutants re- 
vealed two 20-kb reglolls o n  the  L .  pnet~- 
mophlla chromosome that culltall1 a large 
number of genes requlred fur growth in 
~nacrophages (Fig. 1) .  Reg1011 1 c o ~ l t a i ~ l s  
three genes, dotDCB, located about 10 kb 
froln the previously ident~fied dotA-icm- 
\:XYZ locus. Region I1 co~l ta ins  11 genes in 
three potential operons (dotML, dotKI1H- 
GFE, and dotNO). T h e  majority of the dot 
and icm genes identified to date, 14 of 19, 
are predicted to encode proteins that are 
membrane-associated. Although most of 
these protelns are not  homologous to any 
known open reading frames (ORFs),  fuur 
Dot proteins have limited ho~nology to  
colnpollents of bacterial conjugation sys- 
tems (Flg. 1 ) .  T h e  COOH-terminus of 
DotG is homologot~s to Trb  I, a protein 
required for conjugation of the  IncP plas- 
mid RP4 (23% identity over the  C O O H -  

S C ~ O O I  of Medcke Boston, MA 0 2 i i  I, USA terminal 442 amino acids of DotG) (Fig. 1 )  
R R. sberg. Department of Molecular Boogy  and M -  
croboogy and Howard Hughes Medca  nsttute. Tufts ('I' DotM DotL 'lave holnology to 
Unversty ~ c h o o  of Medcne,  Boston, MA 021 I I, USA. TrbA and TrbC,  respectively, from the  Inc 

'To whom correspondence should be addressed E - n a  I plasmid R64 (23% i d e n t l t ~  for DotM and 
r~sberg@opal.tufts.edu T r b A  and 26% identity for DotL and TrbC)  
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(9). Finally, DotB is homologous to a large 
family of nucleotide-binding proteins (for 
example, TrbB) that includes members of 
various conjugal-transfer systems (6). 

To examine the role of one of the dot 
genes with homology to conjugation genes, 
we constructed a large in-frame deletion in 
dotG (10). The dotG deletion mutant was 
assayed for survival and replication in the 
monocytic cell line U937, which supports 
intracellular growth of virulent L. pneumo- 
phila (1 1). Wild-type L. pneumophila con- 
taining the vector pKB5 showed an increase 
in viable counts of lo3 to lo4 cells in 72 
hours, whereas the dotG mutant with the 
same vector showed no growth during this 
time frame (Fig. 2A). Introduction of a 
plasmid encoding the dotG ORF (12) re- 
stored growth of the dotG deletion mutant 

to wild-type amounts. The dotG mutant was 
also defective in altering the endocytic 
pathway, as exhibited by colocalization of 
phagosomes containing the dotG mutants 
and a late endocytic marker, LAMP-1 (Fig. 
2B). In contrast, wild-type L. pneumophila 
are normally able to prevent phagosome- 
lysosome fusion, and therefore phagosomes 
containing these bacteria are relatively de- 
void of endocytic and lysosomal marker 
proteins (2, 13). This lack of proteins can 
be seen by a lack of colocalization of 
wild-type L. pneumophila phagosomes with 
LAMP-1 (Fig. 2B) (1 3). The dotG mutant 
showed a targeting defect similar in magni- 
tude to that of a previously characterized 
dotA mutant (80% LAMP-1 positive) in 
comparison with wild-type cells (20% 
LAMP-1 positive) (3). Thus, loss of a dot 

Fig. 1. Legionella pneumophila dotD C 13 dotA IcmWXYZ 
genes required for growth in mac- 
rophages. dot genes are located in Region I 

two regions, I and I I ,  each consist- 
ing of about 20 kb of DNA. dotDC6 
(GenBank accession number citA dotO N E F  G H I J K  L M 
AF026533) is located 10 kb from a Region II 
oreviouslv identified locus reauired 
for intracellular growth consisting of - 
the genes dot4 and icmWXYZ (3). Insertion mutagenesis of the intervening region between I kb 
dotA and dot6 revealed no additional genes required for growth in macrophages. Region I I  
contains 1 1 dot genes in three potential operons (dotML, dotKJIHGFE, and dotNO) (Genbank accession 
number AF026534). Region I I  is flanked on one side by the L. pneumophila homolog of citA, a 
plasmid-encoded citrate-proton symporter found in certain cit+ E. colistrains (21). dot6, dotE, and dotG 
were identified by the salt selection (6), dotH and dotO by the mutagenesis screen (7), and the remaining 
genes by sequencing the surrounding region. Proteins encoding the genes that are shaded black have 
homology to known conjugation proteins, and proteins encoding the genes that are shaded gray are 
predicted to be membrane associated. 

gene homologous to a conjugation gene 
resulted in a failure to replicate intracellu- 
larly because of an inability to alter target- 
ing similar to that seen with the original 
dotA-icmWXYZ mutants (3, 4). 

To test if the homology of DotG to a 
protein required for conjugation was rele- 
vant, we attempted to determine if the 
Dot proteins could have evolved from a 
DNA transfer system. We assayed transfer 
of the mobilizable IncQ plasmid RSF1010, 
which codes for products involved in con- 
jugative DNA processing but lacks the 
proteins involved in conjugal-pair forma- 
tion and therefore requires those functions 
to be provided in trans (14). Legionella 
pneumophila was able to mobilize RSFlOlO 
to another strain of L. pneumophila at a 
frequency of about lop6 conjugants per 
donor (Table 1, top). Legionella pneumo- 
phila was also able to transfer RSFlOlO to 
two different strains of Escherichia coli 
(ER1793 and MM294) at about the same 
rate (15). Transfer required a cis-acting 
site on the plasmid, the origin of transfer 
(oriT), as normally seen with conjugation 
(AoriT in Table 1, top) (14). Moreover, 
the presence of deoxyribonuclease I 
(DNase I )  had no effect, indicating that 
mobilization was not due to transforma- 
tion by free DNA. Transfer required func- 
tional DotG protein because the AdotG 
strain characterized above was unable to 
transfer the RSFlOlO plasmid pKB5, 
whereas providing the dotG ORF on pKB5 
restored transfer to wild-type amounts 
(Table 1, bottom). Transfer also required 

Fig. 2. (A) DotG is required A ,os 
for intracellular growth. Phor- 
bol ester-transformed U937 10' 

cells were challenged with a = 
P lo6 multiplicity 10 bacteria of per between rnacrophage, 1 and ,05 mi ..- 1 

and growth was assayed as = 
previously described (3). 2 lo4 
Samples from individual mi- 0 

crotiter wells were taken daily lo3 
0 1 2 3  

in triplicate, and viable counts 
were titered on bacteriological 

Day 

plates. Growth was assayed for Lp02/pKB5 (0), a wild-type strain 
containing the vector pKB5 (3); @02/pJB480 (A), a wild-type 
strain containing a plasmid expressing DotG' (75); JV573/pKB5 
(O), a AdotG mutant strain with vector pKB5 (13); and JV5731 
pJB480 (m, a AdotG mutant strain with DotG' ORF. (B) Phago- 
somes containing the doffi mutant colocalize with the late endo- 
cytic marker LAMP-I. Mouse bone marrow macrophages were 
challenged at a multiplicity of infection between 1 and 10 bacteria 
per macrophage to determine the intracellular localization of 
strains lacking functional dotG. After a 1-hour incubation at 37', 
samples were fixed, permeabilized, and stained with antibodies 
to L. pneumophila to localize intracellular bacteria and anti- 
body to LAMP-1 to stain the endocytic compartment (16). The top panels (a in red, and areas of colocalization in orange. The colocalization was per- 
to c) are the wild-type L. pneumophila strain Lp02, and the bottom panels (d formed with Color Merge of IP-Lab Spectrum (Signal Analytics, Vienna, 
to f )  are the dotG mutant strain JV573. LAMP-1 staining is shown in (a) and Virginia). The efficiency of intracellular trafficking was assayed by quantifica- 
(dl, L. pneumophila staining in (b) and (e), and acompositeof the LAMP-I and tion of the number of phagosomes containing bacteria that colocalized with 
bacterial staining in (c) and (f),  consisting of LAMP-1 in green, L. pneumophila LAMP-1 (n > 200 phagosomes assayed in three separate experiments). 
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the donor strain to have a functional copy 
of dotB, one of the other genes with ho
mology to a conjugation gene. In addition, 
mobilization was dependent on genes with 
no homologies to known conjugation 
genes, including the previously character
ized dotA and icmWXYZ genes as well as 
one of the genes we identified, dotE. 

Because the Dot proteins are capable of 
mobilizing RSF1010, they likely constitute 
a secretion system that is capable of trans
ferring a substrate across the outer mem
brane. During intracellular growth, this 
system could deposit a factor or inhibitor 
into macrophages to subvert the endocytic 
pathway. Legionella pneumophila may have 
acquired the dot secretion system by adap
tation of the conjugation system of an 
integrated plasmid and may be another 

example of a pathogenicity island (16). 
The L. pneumophila dot virulence system 

may be distantly related to specialized se
cretion systems, termed type IV, found in 
several other pathogens (17). Agrobacterium 
tumefaciens contains an operon of 12 genes, 
virB, which has extensive homology to a 
traditional plasmid transfer system and is 
used to inject oncogenic transferred DNA 
into plant cells (18). Agrobacterium tumefa
ciens is also able to transfer RSF1010 plas
mid from one cell to another (19). Borde-
tella pertussis contains a related operon, ptl, 
which is used to secrete pertussis toxin (20). 
In contrast to these systems, L. pneumophila 
contains only two conserved proteins 
(DotB has homology to VirBll and DotG 
has homology to VirBlO). Moreover, these 
genes are not found in a single large operon 

of multiple conjugation genes as seen with 
the virB and ptl operons (17). 

The actual substrate transferred by L. 
pneumophila into macrophages is presently 
unknown. However, it would seem unlikely 
that it injects "pathogenic" DNA into 
mammalian cells early in infection as A. 
tumefaciens does to plant cells because the 
endocytic pathway is altered extremely rap
idly within minutes of uptake (4). In con
trast, it is more likely that L. pneumophila 
transfers a protein that acts as an inhibitor 
or modifier of the endocytic pathway. The 
discovery that L. pneumophila dot genes are 
likely to form a secretion machinery pro
vides the first functional indication of how 
L. pneumophila subverts the endocytic path
way of a macrophage. Understanding how 
this pathogen exploits a conjugal-transfer 
system for intracellular growth may shed 
light on how other clinically important 
pathogens, such as Chlamydia and Mycobac
terium, cause disease. 

Note added in proof: After completion of 
the refereeing of this manuscript, Segal and 
Shuman (22) reported icmO and icmP, 
which are identical to doth and dotM, and 
indicated the presence of conjugal transfer. 
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bacterial cultures to incubate for 2 hours at 37°C on 45-mm Millipore hemagglutinin filters (HAWP 047 
SO) placed onto prewarmed charcoal-yeast extract media with thymidine (CYET) plates (3). 

Donor strain* Mediat Recipient:!: 
Number of 

conjugants per donor§ 

RSF1010 
RSF1010 
RSF1010 
RSF1010 
RSF1010 
RSF1010 
RSF1010Aor/T 
RSF1010Aor/T 
RSF1010AO/7T 
RSF1010 

CYET 
CYET 
CYET 
CYET + DNase I 
CYET + DNase I 
CYET + DNase I 
CYET 
CYET 
CYET 
CYET 

Lp01 
E. co//ER1793 
E coli MM294 
Lp01 
E coli ER 1793 
E coli MM294 
Lp01 
E coli ER 1793 
E coli MM294 
E coli C600 

3.9 x 10"6 

6.6 x 10~7 

2.2 x 10~7 

3.2 x 10-6 

9.1 x 10~7 

2.4 x 10~7 

<3.8 x 10~9 

<4.0 x 10~9 

< 3.8 x 10~9 

<3.7 x 10~9 

Donor strainll Donor plasmidSI Recipient 
Number of 

conjugants per donors 

Wild type 
dotG-
dotG-
dotB' 
dotB' 
dotA-
dotA~ 
icmWXYZ-
icmWXYZ-
dotE~ 
dotE~ 

pKB5 
pKB5 
pdotG+ 

pKB5 
pdotB+ 

pKB5 
pdotA + 

pKB5 
picmWXYZ+ 

pKB5 
pdotE+ 

E. coli MM294 
E coli MM294 
E coli MM294 
E coli MM294 
E coli MM294 
E coli MM294 
E coli MM294 
E coli MM294 
E coli MM294 
E coli MM294 
E coli MM294 

2.5 x 10-6 

< 4.3 x 10~9 

3.5 x 10~6 

<5.6 x 10~9 

4.8 x 10~6 

< 6.1 x 10~9 

9.2 x 10~6 

< 1.0 x 10~8 

3.4 x 10~6 

<5.8 x 10-9 

8.7 x 10~6 

*Lp02, a replication-competent strain (3), was transformed by electroporation with either RSF1010 Kan, an RSF1010 
plasmid containing kanamycin from Tn903 (RSF1010 in table) (78), or RSF1010 Aor/T, an RSF1010 plasmid containing 
a deletion (A 13) in the origin of transfer {oril) that completely abolishes conjugation {18). tMatings were performed 
on CYET or CYET containing DNase I (1 fxg/ml). l-'Recipients were either a L. pneumophila strain competent for 
intracellular growth (Lp01) (3), the restriction minus E. coli strains ER1793 {hsdR) and MM294 {hsdR), or the restriction-
competent E. coli strain C600 {19). ^Legionella pneumophila conjugants were selected on charcoal-yeast extract 
lacking thymidine to select against the thymine auxotrophic donor Lp02, as well as kanamycin at 20 |j,g/ml to select for 
plasmid transfer. Escherichia coli conjugants were selected on LB plates containing kanamycin at 25 fxg/ml. The L. 
pneumophila donor strains are unable to grow on LB plates. ||The donor strains are Lp02 (wild type), the dotG 
deletion strain (JV573), and the following four salt-resistant mutants (6): JV303 {dotB), JV309 {dotA), JV312 {icm
WXYZ), and JV328 {dotE). SFThe donor plasmids were either the vector pKB5, an RSF1010 plasmid harboring 
AmpR (3), or pKB5 containing the complementing ORFs for the various mutants. ^Escherichia coli conjugants were 
selected on LB plates containing ampicillin (150 fxg/ml). Reversion rates of markers used to select conjugants were 
substantially below the rates of transfer detected (for example, Lp02 + RSF1010 donor, < 9.1 x 10~11; Lp01 as a 
recipient, <7.7 x 10 _ 1 1 ;£ coli ER 1793 as a recipient, < 1.6 x 10~11; and £ coli MM294 as a recipient, < 1.1 x 
10~10). 
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Meiotic Synapsis in the Absence 
of Recombination 

Kim S. McKim, Becky L. Green-Marroquin, 
Jeff J. Sekelsky, Gregory Chin, Carrie Steinberg, 

Rita Khodosh, R. Scott Hawley 

Although in Saccharomyces cerevisiae the initiation of meiotic recombination, as indi- 
cated by double-strand break formation, appears to be functionally linked to the initiation 
of synapsis, meiotic chromosome synapsis in Drosophila females occurs in the absence 
of meiotic exchange. Electron microscopy of oocytes from females homozygous for 
either of two meiotic mutants (mei-W68 and mei-P22), which eliminate both meiotic 
crossing over and gene conversion, revealed normal synaptonemal complex formation. 
Thus, synapsis in Drosophila is independent of meiotic recombination, consistent with 
a model in which synapsis is required for the initiation of meiotic recombination. Fur- 
thermore, the basic processes of early meiosis may have different functional or temporal 
relations, or both, in yeast and Drosophila. 

I n  the classical view of meiosis, homolo- 
gous chromosome synapsis, as indicated by 
the formation of an elaborate ribbonlike 
structure called the synaptonemal complex 
(SC), was thought to be the first and pri- 
mary event of meiotic prophase, essential 
for the initiation of meiotic recombination 
( 1 ). Studies in Saccharomyces cerevisiae, 
however, have created a different view of 
the meiotic Drocess in which the initiation 
of recombination, as evidenced by a double- 
strand break (DSB).  recedes the initiation . .  
of synapsis (2, 3). Three lines of evidence 
support this view of early meiotic prophase 
in yeast. First, the initiating event of mei- 
otic recombination, the formation of a 
DSB, appears before SC formation (4). Sec- 
ond, meiotic mutants that either fail to 
create DSBs or to process DSBs to make 
single-stranded tails prevent the formation 
of a mature SC (2). Third. some mutants ~, 

allow high levels of meiotic recombination 
but prevent the production of a mature SC 
( 5 ) .  These data are consistent with a model 
in which single-stranded DNA generated 
by a DSB carries out a homology search 
required for synapsis and SC formation. In 
contrast, synapsis is not an absolute prereq- 
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uisite for either the initiation (6)  or com- 
pletion of meiotic recombination (7). 

T o  assess the relation between synapsis 
and the initiation of recombination in Dro- 
sophila oocytes, we examined both recombi- 
nation and SC formation in oocytes homozy- 
gous for either of two null-recombination 
mutations. The mei-W68 and mei-P22 (8)  
mutants prevent the initiation of meiotic 
recombination as defined by four indepen- 
dent assays: (i) reduction or elimination of 
meiotic gene conversion; (ii) elimination of 
meiotic crossing over, as assayed by measur- 
ing either intragenic crossing over or the 
frequency of meiotic crossing over along en- 
tire chromosome arms; (iii) lack of double- 
strand DNA breaks that persist into meta- 
phase or anaphase I; and (iv) failure to pro- 
duce either early or late recombination nod- 
ules (RNs). 

To  assay the effects of the mei-W68 and 
mei-P22 mutations on meiotic crossing over, 
we examined intragenic recombination at 
the rosy locus (9). N o  gene conversion 
events or intragenic crossovers were ob- 
served among the progeny of mei-W68 or 
mei-P22 females (Table 1 and Fig. 1).  Com- 
pared to controls, the frequency of both 
intragenic exchange and simple gene con- 
version was reduced by a factor of at least 30 
to 40 and, most likely, was eliminated. A 

small reduction in gene conversion frequen- 
cv was also observed in the mei-W68l-t fe- 
males, suggesting a dosage effect. 

The effect of these mutations on crossing 
u 

over was also assayed by more conventional 
means. In both mei-W68 and mei-P22 mu- 
tant females, the frequency of crossing over 
alone the entire X and second chromosomes " 

was reduced to less than 0.5% of normal. 
Moreover, the few crossover events that 
were observed tended to be recovered in 
clusters of identical recombinants among the 
progeny of single females, suggesting that 
they resulted from mitotic and not meiotic 
recombination events (10). The failure to . , 

observe meiotic recombination events in 
progeny of mei-W68 and mei-P22 mutant 

I ry53' 
kar cv-c 

Conversion of ry53' allele 

Crossover 

Fig. 1. Gene conversion at the rosy locus (genetic 
map position 52.0). A schematic of the parental 
chromosomes and the three products of intra- 
genic recombination that yield rosy' recombi- 
nants. The distances between the loci are not 
drawn to scale. The recombinants were classified 
as convertants or crossovers on the basis of the 
flanking mutations. In the meikP22 experiment, 
the flanking markers were kar, an eye color mutant 
mapping 0.3 cM to the left, and cv-c, a wing vein 
mutant mapping 2.1 cM to the right of v. In the 
mei-W68 experiment, Ace (52.5) or red (53.6) re- 
placed cv-c (54.1). The two rosy alleles used in 
this study, ry537 and ry606, were chosen because 
they are at opposite ends of the rosy gene, 3780 
nucleotides and 0.01 2 cM apart (29). The average 
length of conversion tracts in Drosophiia is 885 
base pairs (32), and therefore co-conversion 
events are expected to have a minimal effect on 
our experiments. 
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