5'-CCCATTGTGACTCTACACCT-3') followed by a Hinc II restriction indicated the presence of the point mutations in the homozygous mutants.

- 13. The immunoblot analysis was done with protein from adult brain with monoclonal antibodies to α CaMKII and synaptophysin (Boehringer). The secondary antibody was labeled with ¹²⁵I. Blots analyzed with an antibody to β CaMKII (Zymed Laboratories) showed that β CaMKII is expressed at normal amounts in adult brain of the α CaMKII^{T286A-129B6F2} mutants. For the immunocytochemical analysis, coronal sections of the adult brain were incubated with the monoclonal antibody to α CaMKII. Antigen-antibody complexes were visualized with the glucose oxidase-diaminobenzidine-nickel method (31).
- 14. The kinase activity was determined from hippocampal slices with autocamtide-3 as substrate as previously described (11, 32). For wild-type mice (n = 3), the total activity was 5.07 \pm 0.91 pmol⁻¹ µg⁻¹ min, and the CaM-independent activity was 1.09 \pm 0.12 pmol⁻¹ µg⁻¹ min (22.1 \pm 1.8%). For the homozygous mutants (n = 3), the total activity was 4.74 \pm 1.12 pmol⁻¹ µg⁻¹ min, and the CaM-independent activity was 0.40 \pm 0.06 pmol⁻¹ µg⁻¹ min (9.2 \pm 1.9%).
- 15. P. I. Hanson and H. Schulman, *Annu. Rev. Biochem.* **61**, 559 (1992).
- 16. Transverse hippocampal slices (400 μ m) from 5- to 10-month-old mice were placed in a submerged recording chamber perfused continuously with artificial cerebrospinal fluid (ACSF) equilibrated with 95% O₂ and 5% CO₂ at 31°C. Extracellular fEPSPs were recorded with an electrode filled with ACSF in CA1 stratum radiatum, and the Schaffer collaterals were stimulated. A second pathway was used to control the stability of the recordings. The stimulus duration was 100 μ s. The ACSF contained 120 mM NaCl, 3.5 mM KCl, 2.5 mM CaCl₂, 1.3 mM MgSO₄, 1.25 mM NaH₂PO₄, 26 mM NaHCO₃, and 10 mM D-glucose.
- S. Zola-Morgan, L. R. Squire, D. G. Amaral, *J. Neurosci.* 6, 2950 (1986); J. Z. Tsien, P. T. Huerta, S. Tonegawa, *Cell* 87, 1327 (1996).
- 18. Synaptic transmission during the 10-Hz tetanus undergoes biphasic (increase minus decrease) changes. For wild-type mice (n = 6), the maximal increase was 140.3 \pm 3.2%, and for mutants, it was 146.7 \pm 4.4% (n = 5). The maximal decrease (at the end of the tetanus) was 79.2 \pm 6.9% for wild-type mice and 91.6 \pm 8.9% for mutants.
- 19. Excitatory postsynaptic currents were recorded from CA1 pyramidal neurons from 6- to 12-month-old mice with a patch electrode (7 to 10 Mohm) in the whole-cell voltage-clamp mode. The pipette solution contained 122.5 mM cesium methanosulphonate, 17.5 mM CsCl, 10 mM Hepes buffer, 0.1 mM EGTA, 8 mM NaCl, 2 mM Mg-adenosine triphosphate, and 0.3 mM Na₃-guanosine triphosphate (pH 7.25, 290 to 300 mosm). A second pathway was used to control for the stability of the recordings. Picrotoxin (100 µM) was present in all experiments.
- A. Stelzer, G. Simon, G. Kovacs, R. Rai, *Proc. Natl.* Acad. Sci. U.S.A. 91, 3058 (1994).
- 21. Similar results were obtained 10 s after a 2 theta burst (two high-frequency bursts of four stimuli at 100 Hz, with 200 ms separating the onset of each burst) tetanus (wild-type mice without D-AP5: 131.3 ± 5.6%; six mice, 12 slices; wild-type mice with D-AP5: 106.3 ± 2.0%; four mice, eight slices; mutants without D-AP5: 112.4 ± 3.3%; five mice, five slices).
- T. Meyer, P. I. Hanson, L. Stryer, H. Schulman, *Science* 256, 1199 (1992).
- M. D. Ehlers, S. Zhang, J. P. Bernhardt, R. L. Huganir, *Cell* 84, 745 (1996).
- 24. Extracellular field recordings (in the presence of CNQX and PTX, with a stimulation strength of 50μ A) indicated that the NMDAR potentials did not differ between mutant (0.159 \pm 0.053 mV; three mice, four slices) and wild-type mice (0.200 \pm 0.020 mV; three mice, five slices).
- 25. Two- to five-month-old mice were studied in the spatial version of the water maze for 5 days (12 trials per day; blocks of four trials), as previously described (33). Transfer tests were given at the end of days 3 and 5. In another experiment, the mice were tested for 2 days with a visible platform in a

fixed location (12 trials per day); then the visible platform was replaced by a hidden platform, and the mice were tested for another 2 days (12 trials per day). A transfer test was given at the end of training. Data were studied with one-way and twoway analysis of variance.

- R. G. M. Morris, P. Garrud, J. N. P. Rawlins, J. O'Keefe, *Nature* 297, 681 (1982).
- A. Hemsley, N. Arnheim, M. D. Toney, G. Cortopassi, D. J. Galas, *Nucleic Acids Res.* **17**, 6545 (1989).
- A. Nagy, J. Rossant, R. Nagy, W. Abramow-Newerly, J. C. Roder, *Proc. Natl. Acad. Sci. U.S.A.* 90, 8424 (1993).
- E. N. Olson, H.-H. Arnold, P. W. J. Rigby, B. J. Wold, *Cell* **85**, 1 (1996); C. T. N. Pham, D. M. Maclvor, B. A. Hug, J. W. Heusel, T. J. Ley, *Proc. Natl. Acad. Sci. U.S.A.* **93**, 13090 (1996).
- 30. B. Sauer, Methods Enzymol. 225, 890 (1993).

- S. Y. Shu, G. Ju, L. Z. Fan, *Neurosci. Lett.* 85, 169 (1988).
- S. J. Kolb, A. Hudmon, M. N. Waxham, J. Neurochem. 64, 2147 (1995).
- 33. R. Bourtchuladze et al., Cell 79, 59 (1994).
- 34. K. P. Giese, N. B. Fedorov, R. K. Filipkowski, A. J. Silva, data not shown.
- 35. We thank P. Chen, K. Fox, P. W. Frankland, J. H. Kogan, J. E. Lisman, R. Malinow, K. Mizuno, A. Nagy, M. N. Waxham, and D.-J. Zuo for helpful discussions and materials. K.P.G. was supported by a European Molecular Biology Organization and Deutsche Forschungsgemeinschaft fellowship. R.K.F. was supported by the Foundation for Experimental and Clinical Oncology, Poland. A.J.S. was supported by grants from the Whitehall, Beckman, Klingenstein, and McKnight Foundations and NIH (AG13622).

18 September 1997; accepted 11 December 1997

Conjugative Transfer by the Virulence System of Legionella pneumophila

Joseph. P. Vogel, Helene L. Andrews, Swee Kee Wong, Ralph R. Isberg*

Legionella pneumophila, the causative agent of Legionnaires' pneumonia, replicates within alveolar macrophages by preventing phagosome-lysosome fusion. Here, a large number of mutants called *dot* (defective for organelle trafficking) that were unable to replicate intracellularly because of an inability of the bacteria to alter the endocytic pathway of macrophages were isolated. The *dot* virulence genes encoded a large putative membrane complex that functioned as a secretion system that was able to transfer plasmid DNA from one cell to another.

A number of intracellular bacterial pathogens, such as Chlamydia trachomatis, Mycobacterium tuberculosis, and Legionella pneumophila, grow within membrane-bound compartments diverted from the normal endocytic pathway of host cells (1). Legionella pneumophila replicates within alveolar macrophages by preventing acidification of the nascent phagosome and subsequent fusion with lysosomes (2). Several L. pneumophila genes (dotA and icmWXYZ) that are required for growth in macrophages have been identified (3). Mutations in these genes allow bacteria to be internalized into compartments that fuse with lysosomal components (3, 4).

To understand how this organism prevents phagosome-lysosome fusion, we isolated a large collection of additional mutants that were defective for intracellular growth. Twenty-six spontaneous mutants were isolated on the basis of the observation that *L. pneumophila* strains resistant to low

R. R. Isberg, Department of Molecular Biology and Microbiology and Howard Hughes Medical Institute, Tufts University School of Medicine, Boston, MA 02111, USA.

*To whom correspondence should be addressed. E-mail: risberg@opal.tufts.edu amounts of sodium chloride are often unable to replicate in macrophages (5, 6). We independently isolated six additional mutants by screening mutagenized L. pneumophila for a lack of intracellular growth (7). Complementation of these mutants revealed two 20-kb regions on the L. pneumophila chromosome that contain a large number of genes required for growth in macrophages (Fig. 1). Region I contains three genes, dotDCB, located about 10 kb from the previously identified dotA-icm-WXYZ locus. Region II contains 11 genes in three potential operons (dotML, dotKJIH-GFE, and *dotNO*). The majority of the *dot* and icm genes identified to date, 14 of 19, are predicted to encode proteins that are membrane-associated. Although most of these proteins are not homologous to any known open reading frames (ORFs), four Dot proteins have limited homology to components of bacterial conjugation systems (Fig. 1). The COOH-terminus of DotG is homologous to Trb I, a protein required for conjugation of the IncP plasmid RP4 (23% identity over the COOHterminal 442 amino acids of DotG) (Fig. 1) (8). DotM and DotL have homology to TrbA and TrbC, respectively, from the Inc I plasmid R64 (23% identity for DotM and TrbA and 26% identity for DotL and TrbC)

J. P. Vogel, H. L. Andrews, S. K. Wong, Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA.

to wild-type amounts. The *dot*G mutant was

also defective in altering the endocytic

pathway, as exhibited by colocalization of

phagosomes containing the dotG mutants

and a late endocytic marker, LAMP-1 (Fig.

2B). In contrast, wild-type L. pneumophila

are normally able to prevent phagosome-

(9). Finally, DotB is homologous to a large family of nucleotide-binding proteins (for example, TrbB) that includes members of various conjugal-transfer systems (6).

To examine the role of one of the dot genes with homology to conjugation genes, we constructed a large in-frame deletion in dotG (10). The dotG deletion mutant was assayed for survival and replication in the monocytic cell line U937, which supports intracellular growth of virulent L. pneumophila (11). Wild-type L. pneumophila containing the vector pKB5 showed an increase in viable counts of 10^3 to 10^4 cells in 72 hours, whereas the dotG mutant with the same vector showed no growth during this time frame (Fig. 2A). Introduction of a plasmid encoding the dotG ORF (12) restored growth of the *dot*G deletion mutant

Fig. 1. Legionella pneumophila genes required for growth in macrophages. dot genes are located in two regions, I and II, each consisting of about 20 kb of DNA. dotDCB (GenBank accession number AF026533) is located 10 kb from a previously identified locus required for intracellular growth consisting of

B

the genes dotA and icmWXYZ (3). Insertion mutagenesis of the intervening region between 1 kb dotA and dotB revealed no additional genes required for growth in macrophages. Region II contains 11 dot genes in three potential operons (dotML, dotKJIHGFE, and dotNO) (Genbank accession number AF026534). Region II is flanked on one side by the L. pneumophila homolog of citA, a plasmid-encoded citrate-proton symporter found in certain cit+ E. coli strains (21). dotB, dotE, and dotG were identified by the salt selection (6), dotH and dotO by the mutagenesis screen (7), and the remaining genes by sequencing the surrounding region. Proteins encoding the genes that are shaded black have homology to known conjugation proteins, and proteins encoding the genes that are shaded gray are predicted to be membrane associated.

Fig. 2. (A) DotG is required for intracellular growth. Phorbol ester-transformed U937 cells were challenged with a multiplicity of between 1 and 10 bacteria per macrophage, and growth was assayed as previously described (3). Samples from individual microtiter wells were taken daily in triplicate, and viable counts were titered on bacteriological

plates. Growth was assayed for Lp02/pKB5 (O), a wild-type strain containing the vector pKB5 (3); Lp02/pJB480 (△), a wild-type strain containing a plasmid expressing DotG⁺ (15); JV573/pKB5 (\odot) , a $\Delta dotG$ mutant strain with vector pKB5 (13); and JV573/ pJB480 (■), a ∆dotG mutant strain with DotG⁺ ORF. (B) Phagosomes containing the dotG mutant colocalize with the late endocytic marker LAMP-1. Mouse bone marrow macrophages were challenged at a multiplicity of infection between 1 and 10 bacteria per macrophage to determine the intracellular localization of strains lacking functional dotG. After a 1-hour incubation at 37°, samples were fixed, permeabilized, and stained with antibodies

Dot proteins could have evolved from a DNA transfer system. We assayed transfer of the mobilizable IncQ plasmid RSF1010, which codes for products involved in conjugative DNA processing but lacks the proteins involved in conjugal-pair formation and therefore requires those functions

gene homologous to a conjugation gene

resulted in a failure to replicate intracellu-

larly because of an inability to alter target-

ing similar to that seen with the original

protein required for conjugation was rele-

vant, we attempted to determine if the

To test if the homology of DotG to a

dotA-icmWXYZ mutants (3, 4).

to be provided in trans (14). Legionella pneumophila was able to mobilize RSF1010 to another strain of L. pneumophila at a frequency of about 10^{-6} conjugants per donor (Table 1, top). Legionella pneumophila was also able to transfer RSF1010 to two different strains of Escherichia coli (ER1793 and MM294) at about the same rate (15). Transfer required a cis-acting site on the plasmid, the origin of transfer (*oriT*), as normally seen with conjugation ($\Delta oriT$ in Table 1, top) (14). Moreover, the presence of deoxyribonuclease I (DNase I) had no effect, indicating that mobilization was not due to transformation by free DNA. Transfer required functional DotG protein because the $\Delta dotG$ strain characterized above was unable to transfer the RSF1010 plasmid pKB5, whereas providing the dotG ORF on pKB5 restored transfer to wild-type amounts (Table 1, bottom). Transfer also required

in red, and areas of colocalization in orange. The colocalization was performed with Color Merge of IP-Lab Spectrum (Signal Analytics, Vienna, Virginia). The efficiency of intracellular trafficking was assayed by quantification of the number of phagosomes containing bacteria that colocalized with LAMP-1 (n > 200 phagosomes assayed in three separate experiments).

the donor strain to have a functional copy of *dotB*, one of the other genes with homology to a conjugation gene. In addition, mobilization was dependent on genes with no homologies to known conjugation genes, including the previously characterized *dotA* and *icmWXYZ* genes as well as one of the genes we identified, *dotE*.

Because the Dot proteins are capable of mobilizing RSF1010, they likely constitute a secretion system that is capable of transferring a substrate across the outer membrane. During intracellular growth, this system could deposit a factor or inhibitor into macrophages to subvert the endocytic pathway. *Legionella pneumophila* may have acquired the *dot* secretion system by adaptation of the conjugation system of an integrated plasmid and may be another example of a pathogenicity island (16).

The L. pneumophila dot virulence system may be distantly related to specialized secretion systems, termed type IV, found in several other pathogens (17). Agrobacterium tumefaciens contains an operon of 12 genes, virB, which has extensive homology to a traditional plasmid transfer system and is used to inject oncogenic transferred DNA into plant cells (18). Agrobacterium tumefaciens is also able to transfer RSF1010 plasmid from one cell to another (19). Bordetella pertussis contains a related operon, ptl, which is used to secrete pertussis toxin (20). In contrast to these systems, L. pneumophila contains only two conserved proteins (DotB has homology to VirB11 and DotG has homology to VirB10). Moreover, these genes are not found in a single large operon

Table 1. The *L. pneumophila dot* virulence loci are required to transfer RSF1010 plasmid into recipient bacteria. Mating was assayed by mixing 1.0×10^9 *L. pneumophila* containing noted plasmids with a tenfold excess of a recipient bacteria strain. Matings were performed in triplicate by allowing the mixed bacterial cultures to incubate for 2 hours at 37°C on 45-mm Millipore hemagglutinin filters (HAWP 047 S0) placed onto prewarmed charcoal-yeast extract media with thymidine (CYET) plates (3).

Donor strain*	Media†	Recipient‡	Number of conjugants per donor§
RSF1010 RSF1010 RSF1010 RSF1010 RSF1010 RSF1010 Δ <i>oriT</i> RSF1010 Δ <i>oriT</i> RSF1010 Δ <i>oriT</i> RSF1010 Δ <i>oriT</i>	CYET CYET CYET + DNase I CYET + DNase I CYET + DNase I CYET CYET CYET CYET CYET	Lp01 <i>E. coli</i> ER1793 <i>E. coli</i> MM294 Lp01 <i>E. coli</i> ER1793 <i>E. coli</i> MM294 Lp01 <i>E. coli</i> ER1793 <i>E. coli</i> ER1793 <i>E. coli</i> C600	$\begin{array}{c} 3.9 \times 10^{-6} \\ 6.6 \times 10^{-7} \\ 2.2 \times 10^{-7} \\ 3.2 \times 10^{-6} \\ 9.1 \times 10^{-7} \\ 2.4 \times 10^{-7} \\ < 3.8 \times 10^{-9} \\ < 4.0 \times 10^{-9} \\ < 3.8 \times 10^{-9} \\ < 3.7 \times 10^{-9} \end{array}$
Donor strain	Donor plasmid¶	Recipient	Number of conjugants per donor#
Wild type dotG ⁻ dotG ⁻ dotB ⁻ dotB ⁻ dotA dotA icmWXYZ icmWXYZ dotE	pKB5 pKB5 pdotG ⁺ pKB5 pdotB ⁺ pKB5 pdotA ⁺ pKB5 picmWXYZ ⁺ oKB5	E, coli MM294 E, coli MM294	2.5×10^{-6} $< 4.3 \times 10^{-9}$ 3.5×10^{-6} $< 5.6 \times 10^{-9}$ 4.8×10^{-6} $< 6.1 \times 10^{-9}$ 9.2×10^{-6} $< 1.0 \times 10^{-8}$ 3.4×10^{-6} $< 5.8 \times 10^{-9}$
dotE ⁻	ркво pdotE+	E. coli MM294 E. coli MM294	$< 5.8 \times 10^{-6}$ 8.7×10^{-6}

*Lp02, a replication-competent strain (3), was transformed by electroporation with either RSF1010 Kan, an RSF1010 plasmid containing kanamycin from Tn903 (RSF1010 in table) (18), or RSF1010 *DoriT*, an RSF1010 plasmid containing a deletion (Δ 13) in the origin of transfer (*oriT*) that completely abolishes conjugation (18). †Matings were performed on CYET or CYET containing DNase I (1 µg/ml), #Recipients were either a L. pneumophila strain competent for intracellular growth (Lp01) (3), the restriction minus E. coli strains ER1793 (hsdR) and MM294 (hsdR), or the restrictioncompetent E. coli strain C600 (19). \$Legionella pneumophila conjugants were selected on charcoal-yeast extract lacking thymidine to select against the thymine auxotrophic donor Lp02, as well as kanamycin at 20 µg/ml to select for plasmid transfer. Escherichia coli conjugants were selected on LB plates containing kanamycin at 25 µg/ml. The L. pneumophila donor strains are unable to grow on LB plates. |The donor strains are Lp02 (wild type), the dotG deletion strain (JV573), and the following four salt-resistant mutants (6): JV303 (dotB), JV309 (dotA), JV312 (icm-WXYZ), and JV328 (dotE). The donor plasmids were either the vector pKB5, an RSF1010 plasmid harboring Amp^R (3), or pKB5 containing the complementing ORFs for the various mutants. =Escherichia coli conjugants were selected on LB plates containing ampicillin (150 µg/ml). Reversion rates of markers used to select conjugants were substantially below the rates of transfer detected (for example, Lp02 + RSF1010 donor, $< 9.1 \times 10^{-11}$; Lp01 as a recipient, $< 7.7 \times 10^{-11}$; E. coli ER1793 as a recipient, $< 1.6 \times 10^{-11}$; and E. coli MM294 as a recipient, $< 1.1 \times 10^{-11}$; and E. coli MM294 as a recipient, $< 1.1 \times 10^{-11}$; and E. coli MM294 as a recipient, $< 1.1 \times 10^{-11}$; and E. coli MM294 as a recipient, $< 1.1 \times 10^{-11}$; and E. coli MM294 as a recipient, $< 1.1 \times 10^{-11}$; and E. coli MM294 as a recipient, $< 1.1 \times 10^{-11}$; and E. coli MM294 as a recipient, $< 1.1 \times 10^{-11}$; and E. coli MM294 as a recipient, $< 1.1 \times 10^{-11}$; and E. coli MM294 as a recipient, $< 1.1 \times 10^{-11}$; and E. coli MM294 as a recipient, $< 1.1 \times 10^{-11}$; and E. coli MM294 as a recipient, $< 1.1 \times 10^{-11}$; and E. coli MM294 as a recipient, $< 1.1 \times 10^{-11}$; and E. coli MM294 as a recipient, $< 1.1 \times 10^{-11}$; and E. coli MM294 as a recipient, $< 1.1 \times 10^{-11}$; and E. coli MM294 as a recipient, $< 1.1 \times 10^{-11}$; and E. coli MM294 as a recipient, $< 1.1 \times 10^{-11}$; and E. coli MM294 as a recipient, $< 1.1 \times 10^{-11}$; and E. coli MM294 as a recipient, $< 1.1 \times 10^{-11}$; and E. coli MM294 as a recipient, $< 1.1 \times 10^{-11}$; and E. coli MM294 as a recipient, $< 1.1 \times 10^{-11}$; and E. coli MM294 as a recipient, $< 1.1 \times 10^{-11}$; and E. coli MM294 as a recipient, $< 1.1 \times 10^{-11}$; and E. coli MM294 as a recipient, $< 1.1 \times 10^{-11}$; and $< 1.1 \times 10^{-11}$; a 10^{-10}

of multiple conjugation genes as seen with the *virB* and *ptl* operons (17).

The actual substrate transferred by L. pneumophila into macrophages is presently unknown. However, it would seem unlikely that it injects "pathogenic" DNA into mammalian cells early in infection as A. tumefaciens does to plant cells because the endocytic pathway is altered extremely rapidly within minutes of uptake (4). In contrast, it is more likely that L. pneumophila transfers a protein that acts as an inhibitor or modifier of the endocytic pathway. The discovery that L. pneumophila dot genes are likely to form a secretion machinery provides the first functional indication of how L. pneumophila subverts the endocytic pathway of a macrophage. Understanding how this pathogen exploits a conjugal-transfer system for intracellular growth may shed light on how other clinically important pathogens, such as Chlamydia and Mycobacterium, cause disease.

Note added in proof: After completion of the refereeing of this manuscript, Segal and Shuman (22) reported *icmO* and *icmP*, which are identical to *dotL* and *dotM*, and indicated the presence of conjugal transfer.

REFERENCES AND NOTES

- F. G. Portillo and B. B. Finlay, *Trends Microbiol.* 3, 373 (1995); K. A. Joiner, *J. Clin. Invest.* 99, 1814 (1997).
- M. A. Horwitz, J. Exp. Med. **158**, 1319 (1983); *ibid.*, p. 2108; M. A. Horwitz and F. R. Maxfield, J. Cell Biol. **99**, 1936 (1984).
- K. H. Berger and R. R. Isberg, *Mol. Microbiol.* 7, 7 (1993); B. C. Brand, A. B. Sadosky, H. A. Shuman, *ibid.* 14, 797 (1994); K. H. Berger, J. J. Merriam, R. R. Isberg, *ibid.*, p. 809.
- C. R. Roy and R. R. Isberg, *Infect. Immun.* 65, 571 (1997); C. R. Roy, K. Berger, R. R. Isberg, in preparation.
- C. E. Catrenich and W. Johnson, *Infect. Immun.* 57, 1862 (1989).
- J. P. Vogel, C. Roy, R. R. Isberg, Ann. N.Y. Acad. Sci. 797, 271 (1996).
- H. L. Andrews, J. P. Vogel, R. R. Isberg, Infect. Immun., in press.
- M. Lessl, D. Balzer, W. Pansegrau, E. Lanka, J. Biol. Chem. 267, 20471 (1992); J. Alt-Morbe et al., J. Bacteriol. 178, 4248 (1996); R. F. Pohiman, H. D. Genetti, S. C. Winans, Mol. Microbiol. 14, 655 (1994); C. Freiberg et al., Nature 387, 394 (1997).
- N. Furuya and T. Komano, J. Bacteriol. 178, 1491 (1996).
- 10. We constructed a large in-frame deletion of DotG by deleting amino acids 431 to 935 of the DotG protein (base pairs 8894 to 7471 of Genbank accession number AF026534). Replacement of the wild-type copy of *dotG* by *ΔdotG* was confirmed by polymerase chain reaction (PCR) and was shown not to be polar on expression of downstream proteins by immunoprobing with antibodies to the DotF protein.
- E. Pearlman, N. C. Engleberg, B. I. Eisenstein, *Microb. Pathog.* 63, 4928 (1988).
- 12. The dotG ORF (GenBank accession number AF026534 between base pairs 7135 and 10,278 of region II) was PCR amplified and cloned into the Bam HI–Sai I sites of plasmid pKB5 (3) under expression of the tac promoter.
- 13. D. L. Clemens and M. A. Horwitz, J. Exp. Med. 181,

257 (1995); M. S. Swanson and R. R. Isberg, *Infect. Immun.* **64**, 2585 (1995).

- P. Scholz *et al.*, *Gene* **75**, 271 (1989); J. Frey, M. M. Bagdasarian, M. Bagdasarian, *ibid.* **113**, 101 (1992).
- B. J. Bachman, in E. coli and Salmonella typhimurium, F. C. Neidhardt *et al.*, Eds. (American Society for Microbiology, Washington, DC, 1987), pp. 1190–1219; J. E. Kelleher and E. A. Raleigh, *J. Bacteriol.* **173**, 5220 (1991).
- C. A. Lee, Infect. Agents Dis. 5, 1 (1996); J. Mecsas and E. J. Strauss, Emerg. Infect. Dis. 2, 271 (1996).
- 17. G. P. C. Salmond, Annu. Rev. Phytopathol. 32, 181

(1994); S. C. Winans, D. L. Burns, P. J. Christie, *Trends Microbiol.* **4**, 64 (1996).

- G. A. Kuldau, G. De Vos, J. Owen, G. McCaffrey, P. Zambryski, *Mol. Gen. Genetics* **221**, 256 (1990);
 P. M. Rogowsky *et al.*, *Plasmid* **23**, 85 (1990); P. J. Christie, *J. Bacteriol.* **179**, 3085 (1997).
- V. Buchanan-Wollaston, J. E. Passiatore, F. Cannon, *Nature* **328**, 172 (1987); A. Beijersbergen, A. D. Dulk-Ras, R. A. Schilperoort, P. J. Hooykaas, *Science* **256**, 1324 (1992); K. J. Fullner, J. C. Lara, E. W. Nester, *ibid.* **273**, 1107 (1996).
- A. A. Weiss, F. D. Johnson, D. L. Burns, *Proc. Natl.* Acad. Sci. U.S.A. 90, 2970 (1993).

Meiotic Synapsis in the Absence of Recombination

Kim S. McKim, Becky L. Green-Marroquin, Jeff J. Sekelsky, Gregory Chin, Carrie Steinberg, Rita Khodosh, R. Scott Hawley

Although in *Saccharomyces cerevisiae* the initiation of meiotic recombination, as indicated by double-strand break formation, appears to be functionally linked to the initiation of synapsis, meiotic chromosome synapsis in *Drosophila* females occurs in the absence of meiotic exchange. Electron microscopy of oocytes from females homozygous for either of two meiotic mutants (*mei-W68* and *mei-P22*), which eliminate both meiotic crossing over and gene conversion, revealed normal synaptonemal complex formation. Thus, synapsis in *Drosophila* is independent of meiotic recombination, consistent with a model in which synapsis is required for the initiation of meiotic recombination. Furthermore, the basic processes of early meiosis may have different functional or temporal relations, or both, in yeast and *Drosophila*.

In the classical view of meiosis, homologous chromosome synapsis, as indicated by the formation of an elaborate ribbonlike structure called the synaptonemal complex (SC), was thought to be the first and primary event of meiotic prophase, essential for the initiation of meiotic recombination (1). Studies in Saccharomyces cerevisiae, however, have created a different view of the meiotic process in which the initiation of recombination, as evidenced by a doublestrand break (DSB), precedes the initiation of synapsis (2, 3). Three lines of evidence support this view of early meiotic prophase in yeast. First, the initiating event of meiotic recombination, the formation of a DSB, appears before SC formation (4). Second, meiotic mutants that either fail to create DSBs or to process DSBs to make single-stranded tails prevent the formation of a mature SC (2). Third, some mutants allow high levels of meiotic recombination but prevent the production of a mature SC (5). These data are consistent with a model in which single-stranded DNA generated by a DSB carries out a homology search required for synapsis and SC formation. In contrast, synapsis is not an absolute prerequisite for either the initiation (6) or completion of meiotic recombination (7).

To assess the relation between synapsis and the initiation of recombination in Drosophila oocytes, we examined both recombination and SC formation in oocytes homozygous for either of two null-recombination mutations. The mei-W68 and mei-P22 (8) mutants prevent the initiation of meiotic recombination as defined by four independent assays: (i) reduction or elimination of meiotic gene conversion; (ii) elimination of meiotic crossing over, as assayed by measuring either intragenic crossing over or the frequency of meiotic crossing over along entire chromosome arms; (iii) lack of doublestrand DNA breaks that persist into metaphase or anaphase I; and (iv) failure to produce either early or late recombination nodules (RNs).

To assay the effects of the *mei-W68* and *mei-P22* mutations on meiotic crossing over, we examined intragenic recombination at the rosy locus (9). No gene conversion events or intragenic crossovers were observed among the progeny of *mei-W68* or *mei-P22* females (Table 1 and Fig. 1). Compared to controls, the frequency of both intragenic exchange and simple gene conversion was reduced by a factor of at least 30 to 40 and, most likely, was eliminated. A

- N. Ishiguro and G. Sato, *J. Bacteriol.* **164**, 977 (1985); M. Sasatsu, T. K. Misra, L. Chu, R. Laddaga, S. Silver, *ibid.*, p. 983.
- 22. G. Segal and H. A. Shuman, *Infect. Immun.* **65**, 5057 (1997).
- 23. We thank M. Malamy and D. Cook for helpful suggestions and M. Bagdasarian for supplying the ΔoriT RSF1010 plasmid. Supported by a Medical Foundation grant to J.P.V. R.R.I. is an associate investigator of the Howard Hughes Medical Institute.

7 October 1997; accepted 16 December 1997

small reduction in gene conversion frequency was also observed in the *mei-W68/+* females, suggesting a dosage effect.

The effect of these mutations on crossing over was also assayed by more conventional means. In both *mei-W68* and *mei-P22* mutant females, the frequency of crossing over along the entire X and second chromosomes was reduced to less than 0.5% of normal. Moreover, the few crossover events that were observed tended to be recovered in clusters of identical recombinants among the progeny of single females, suggesting that they resulted from mitotic and not meiotic recombination events (10). The failure to observe meiotic recombination events in progeny of *mei-W68* and *mei-P22* mutant

Fig. 1. Gene conversion at the rosy locus (genetic map position 52.0). A schematic of the parental chromosomes and the three products of intragenic recombination that yield rosy+ recombinants. The distances between the loci are not drawn to scale. The recombinants were classified as convertants or crossovers on the basis of the flanking mutations. In the mei-P22 experiment, the flanking markers were kar, an eye color mutant mapping 0.3 cM to the left, and cv-c, a wing vein mutant mapping 2.1 cM to the right of ry. In the mei-W68 experiment, Ace (52.5) or red (53.6) replaced cv-c (54.1). The two rosy alleles used in this study, ry^{531} and ry^{606} , were chosen because they are at opposite ends of the rosy gene, 3780 nucleotides and 0.012 cM apart (29). The average length of conversion tracts in Drosophila is 885 base pairs (32), and therefore co-conversion events are expected to have a minimal effect on our experiments.

Section of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA.