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There are several forms of hereditary human hair loss, known collectively as alopecias,
the molecular bases of which are entirely unknown. A kindred with a rare, recessively
inherited type of alopecia universalis was used to search for a locus by homozygosity
mapping, and linkage was established in a 6-centimorgan interval on chromosome
8p12 (the logarithm of the odds favoring linkage score was 6.19). The human homolog
of a murine gene, hairless, was localized in this interval by radiation hybrid mapping,
and a missense mutation was found in affected individuals. Human hairless encodes
a putative single zinc finger transcription factor protein with restricted expression in

the brain and skin.

The human hair follicle is a dynamic struc-
ture that generates hair through a complex
and exquisitely regulated cycle of growth
and remodeling (1). Despite the extensive
descriptive understanding of the hair cycle,
currently, very little is known about the
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molecular control of the signals that regu-
late progression through the hair cycle, al-
though it is clear that at least some poten-
tially influential regulatory molecules may
play a role (I). For example, a knock-out
mouse with targeted ablation of the gene
encoding the fibroblast growth factor 5
(FGF5) provided evidence that FGF5 is an
inhibitor of hair elongation, and the mouse
had an increase in hair length due to an
increase in the time that follicles remain in
anagen. The FGF5 gene was also deleted in
the naturally occurring mouse model, ango-
ra (2). Another member of the FGF family,
FGF7 or keratinocyte growth factor, was
disrupted by gene targeting, and the result-
ant mouse had hair with a greasy, matted
appearance, similar in phenotype to the
rough mouse (3). A transgenic mouse was
engineered that disrupted the spatial and
temporal expression of the gene encoding
the lymphoid enhancer factor 1, a transcrip-
tion factor that binds to the promoter re-
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gion of several published hair keratin pro-
moters. Disruption of this potential master
regulator of hair keratin transcription re-
sulted in defects in the positioning and
angling of the hair follicles (4). More re-
cently, a mutation in a structural protein,
mouse desmoglein 3 (encoded by the gene
dsg3), was found to be the underlying mu-
tation in the naturally occurring mouse
phenotype, balding (5). Finally, the nude
mouse phenotype, characterized by hairless-
ness and athymia, was found to be the result
of mutations in the winged-helix nude
(whn) gene, a member of the winged-helix
class of transcription factors (6). In addition
to the complexity of the signaling pathways,
in sheep, there are over 100 distinct struc-
tural proteins synthesized by the hair cortex
and cuticle cells that produce the keratin-
ized structure of a wool fiber (I). Despite
these examples of recent progress in animal
models, we have only begun to understand
the control and molecular complexity of
the hair follicle and its cyclic progression in
humans. '

There are several forms of hereditary
human hair loss, known collectively as alo-
pecias, which may represent a dysregulation
of the cycle of hair growth and remodeling
(1), yet the molecular basis of the alopecias
has remained largely unexplored (7). The
most common form of hair loss, known as
androgenetic alopecia (male pattern bald-
ness), is believed by some to affect ~80% of
the population (7). Alopecia areata is a
common dermatologic disease affecting
about 2.5 million individuals in the United
States alone, which causes round, patchy
hair loss on the scalp (7). Alopecia areata
can progress to involve hair loss from the
entire scalp; this condition is referred to as
alopecia totalis. Alopecia universalis (AU)
is the term for the most extreme example of
disease progression, which results in the
complete absence of scalp and body hair
(7). Although an autoimmune patho-
mechanism for alopecia areata has been
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suggested, the precise etiology is unknown,
and no autoantigen or causative gene has
been identified (8). The inheritance pat-
terns of these forms of alopecia are also
unclear, although a polygenic model with
variability in penetrance and expressivity
would appear most plausible, perhaps mod-
ulated by superimposed hormonal or im-
mune factors.

In an effort to understand the molecular
basis of a simple, recessively inherited form
of AU (Online Mendelian Inheritance in
Man accession number 203655) with no
evidence of a confounding autoimmune
component, we studied a large Pakistani
kindred with AU segregating as a single
Mendelian abnormality without associated
ectodermal defects and containing four af-
fected males and seven affected females
(Fig. 1). The affected individuals were in
good general health, with no evidence for
immune system dysfunction or unusual sus-
ceptibility to skin tumors. At birth, the hair
usually appears normal on the scalp but
never regrows after a ritual shaving, usually
performed a week after birth (Fig. 2, A and
B). A skin biopsy from the scalp of an
affected person revealed very few hair folli-
cles, which were dilated and without hairs
(Fig. 2C), and the absence of an inflamma-
tory infiltrate. Affected individuals are born
completely devoid of eyebrows and eyelash-
es (Fig. 2B) and never develop axillary and
pubic hair. The pedigree is strongly sugges-
tive of autosomal recessive inheritance, and
the large number of consanguineous loops
account for all affected persons being ho-

" mozygous for the abnormal allele (Fig. 1).

To identify the alopecia locus segregating
in this family, we initiated a genome-wide
search for linkage by homozygosity mapping
(9). During the initial screening, DNA sam-
ples from four affected individuals (IV-20,
V-2, V-11, and VI-2 in Fig. 1) were geno-
typed with 386 highly polymorphic micro-
satellite markers spaced at 10-centimorgan
(cM) intervals (10). In the course of this
screen, 13 genomic regions were found to be
homozygous for three to four affected indi-
viduals; each of these genomic regions were
tested further in 32 additional family mem-
bers, and 12 of the regions were excluded.
One marker, D8S136 on chromosome 8p12,
was found to be homozygous in all seven
living affected individuals. Further analysis
with 'markers from this region resulted in the
identification of homozygosity in all affected
individuals for the markers D8S1786 and
D8S298 (11). Allele patterns obtained with
the markers D8S136 and D8S1786 indicated
that these two markers are placed very close
to each other on chromosome 8p12. A max-
imum two-point logarithm of the odds ratio
for linkage (lod) score of 6.19 at zero recom-
bination was achieved with the marker
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Fig. 1. Pedigree of the AU family over six generations. Black circles and squares represent affected
females and males, respectively, figures with a black dot at the center represent heterozygous carriers,
and figures with diagonal lines represent deceased individuals. The gray shaded box beneath the
pedigree characters indicates the haplotype on chromosome 8p that cosegregates with the disease.
The order of the markers is indicated in the lower right corner.

Fig. 2. Clinical presentation of the AU pheno-
type. (A) Note the complete absence of hair over
the entire scalp of an affected individual (V-11 in
Fig. 1). (B) The eyebrows, eyelashes, and facial
hair are completely missing. (C) Histopathology
of a scalp biopsy from the same individual re-
vealed a markedly reduced number of hair folli-
cles, and those present were found to be dilated
and without hairs (lower left). Note the absence
of an inflammatory infiltrate.
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Fig. 3. (A) The lod score calcula- A D8S298 (Fig. 3A) by means of the FAST-

Recombination fraction @

tions for the linkage of AU to chro- |« 0 001 005 01 02 03 o4 LINK3.0 package (12), indicating that the
mosome 8p12 markers for the AU alopecia gene in this family maps to chro-
family. The a signifies infinity. (B) ggggg %19 g‘gz g‘zg 2.45; ;'fz :'215 gi; mosome 8pl2. Recombinant haplotypes ob-
Comparison of the linkage interval D8S1786 492 483 443 392 287 179 o7eé served in individuals VI-2 and VI-7 placed
defined in the AU family (left) with D8S1738 o 174 264 261 182 1 02  the al ia 1 ithi 6-cM i ]
the location of the human hairless ’ ' - - e alopecia locus within a 6-cM interva
(hr) gene (right) established by radi- . B between the distal and proxxrpal mar.kers,
ation hybrid mapping. By linkage analysis, the locus of thé gene D8S258 and D8S1739, respectively (Fig. 3,
in the AU family was predicted to lie within the 6-cM interval D8S280 Das280 A and B), with no obvious candidate genes
defined by the markers D8S258 and D8S1739 (left). By radiation D8s258 in this interval.

hybrid mapping, the hairless gene was predicted to lie within the I 2cM In an independent line of investigation,.
19-cM interval between the markers D8S280 and D8S278 19.7 cr we had developed an interest in the hairless
{right), thus making it a strong candidate gene in the AU family. D8S298 mouse (13) as a potential model for inherit-
Physical distance is reported in centirads (cr). - ed human alopeéias and had begun to clone
| hr the human homolog of hairless with polymer-

Des1786 ase chain reaction (PCR) primers based on

l 3cM the available murine cDNA sequence (Gen-

Bank accession number Z32675) (13). We

D8S1739 28.1 cr reverse transcriptase (RT)-PCR amplified a

| 15 M segment"correspondmg to exons 13 to '18 i.n

the murine sequence using human skin fi-

D8s278 D8S278 broblast mRNA as template (14) and subse-

- quently delineated the entire coding se-

quence of human hairless, which consists of
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Fig. 4. (A) Sequence comparison of human (H), mouse (M), and rat (R) hairless. Areas shaded in black
represent regions of complete homology, those shaded in grey represent conservative amino acid
substitutions, and areas in white represent nonconservative substitutions. The homology of human
hairless compared with mouse and rat was 84% and 83%, respectively. The conserved six-cysteine 3 . v

motif is indicated by asterisks beneath the sequence. (B) Northern blot analysis of human hairless (hr)in  hr—» hr —»| -

poly(A)* mRBNA from eight different tissues, revealing a ~5-kb message (arrow). Lanes 1 to 8 show
heart, brain, placenta, lung, liver, skeletal muscle, kidney, and pancreas, respectively. Substantial
expression is noted only in the brain (lane 2), with trace expression elsewhere (lanes 1 and 3 to 8). (C)
Northern blot analysis of human hairless in poly(A)* mRBNA from cultured fibroblasts derived from
hair-bearing skin reveals the same size hairless message (arrow).
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1189 amino acids (Fig. 4A). The expression
pattern of human hairless is consistent with
that observed in mouse (13) and rat (15),
with substantial expression in the brain and
skin (Fig. 4, B and C) and trace expression
elsewhere (16). The human and mouse ami-
no acid sequences are 84% homologous and
80% identical, and the human and rat se-
quences are 83% homologous and 78% iden-
tical (Fig. 4A). The murine hairless gene
resides on mouse chromosome 14 (13),
which shares synteny with human chromo-
somes 8p and 14q, among others (17). To
determine the precise chromosomal localiza-
tion of the human homolog of hairless, we
used radiation hybrid mapping (18) with the
GeneBridge 4 panel consisting of 93 radia-
tion-induced human-hamster cell hybrids
(Research Genetics), which placed the hu-
man homolog of the mouse hairless gene on
chromosome 8p, between the two polymor-
phic markers D8S280 and D8S278, spanning
a 19-cM region (Fig. 3B). The 6-cM candi-
date region obtained for the AU gene by
linkage analysis with flanking markers
D8S258 and D8S1739 lies between markers
D8S280 and D8S278 on the basis of the
Genome Data Base (17), the Center for
Medical Genetics database (19), and the
radiation hybrid map constructed by the Hu-
man Genome Mapping Center at Stanford

Fig. 5. Mutation analysis A
of exon 15 of the human

University (20). On the basis of this genom-
ic colocalization, the human hairless gene
became a major candidate gene responsible
for AU in this family, and the search for a
mutation was initiated.

Direct sequence analysis (21) of exon 15
(amino acids 993 to 1032, Fig. 4A) revealed
a homozygous A-to-G transition in all af-
fected individuals, which was present in the
heterozygous state in obligate carriers with-
in the family and not found in unaffected
family members (Fig. 5). The A-to-G tran-
sition occurred at the first base of a threo-
nine (T) residue at position 1022 (ACA),
leading to a missense mutation and con-
verting the threonine residue to an alanine
(A) residue (GCA), and was designated
T1022A. The mutation created a new
cleavage site for the restriction endonucle-
ase Hga [ (GACGC), which was used to
confirm the presence of the mutation in
genomic DNA, in addition to direct se-
quencing (21). To verify that the missense
mutation was not a normal polymorphic
variant, we screened for the mutation by a
combination of heteroduplex analysis (22),
direct sequencing, and restriction digestion
in a control population consisting of 142
unrelated, unaffected individuals, 87 of
whom were of Pakistani origin. No evi-
dence for the mutant allele was found in

hairless gene in the AU
family. (A) The wild-type
sequence contains a ho-
mozygous A (arrow), at
the first base of a threo-
nine codon (ACA). (B) Se-
quence analysis of het-
erozygous carriers in the
AU family reveals the
presence of a G as well
as the wild-type A at this
position (arrow). (C) Se-

Wild-type
allele

quencing of all affected
individuals in the AU fam-
ity reveals a homozygous
mutant G at this position
(arrow), resulting in the
substitution of threonine
by alanine (GCA).

Heterozygous
A-to-G
mutant allele
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these individuals.

The hairless mouse, hr/hr, arose from spon-
taneous integration of an endogenous mu-
rine leukemia provirus into intron 6 of the
hairless gene (23), resulting in aberrant splic-
ing and only about 5% normal mRNA tran-
scripts present in hr/hr mice (13). The pro-
tein encoded by the human, mouse, and rat
hairless genes contains a single zinc finger
domain with a novel and conserved six-
cysteine motif and is therefore thought to
function as a transcription factor (13, 15),
with structural homology to the GATA fam-
ily (24) and to TSGA, a protein encoded by
a gene expressed in rat testis (25). In addi-
tion to the total body hair loss that bears
striking resemblance to AU, the hr/hr mouse
exhibits a number of phenotypic effects not
observed in the AU family, including defec-
tive differentiation of thymocytes (26), as
well as a unique sensitivity to ultraviolet
radiation and chemically induced skin tu-
mors (27). Similar to previous studies in
mouse and rat, human hairless was substan-
tially expressed in fibroblasts from hair-bear-
ing skin and most highly expressed in brain,
where its importance remains unknown
(15). Evidence in support of a role for mul-
tifunctional transcription factors involved in
hair loss can be drawn from genetic studies of
the whn gene in nude mice, in which muta-
tions in a winged-helix transcription factor
result in the absence of hair and athymia (6).
Molecular evolutionary studies of whn have
shown that a homolog is present in the
puffer fish, Fugu rubripes, which has a thy-
mus, but not hair, therefore suggesting that
its role in hair keratinization may represent a
new function for whn in mammals (6). A
COQOH-terminal activation domain was
identified in whn by comparative genome
analysis. The essential function of this do-
main could be obliterated by site-directed
mutagenesis of acidic residues to alanine,
analogous to the missense mutation we de-
scribe in the AU family (Fig. 5). It is possible
that in humans, the AU mutation disrupts a
similar potential activation domain within
hairless with restricted specificity in the skin,
whereas the hr/hr mouse displays a more
pleiotropic defect because of the near ab-
sence of hairless mMRNA and protein (6, 28).
We anticipate that further studies into the
biology of human hairless and its transactiva-
tion targets may illuminate potential thera-
peutic opportunities.
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