
and S .  bombe. Those results are consistent 
with a model in  which iron depletion of 
nortnal h e ~ a t o c v t e s  causes increased tran- 
scription 07 C p  ;hat interacts with a n  iron 
transporter (also up-regulated by iron de- 
pletion),  resulting i n  increased iron influx. 
T h e  iron depletion requirement for C p -  
stimulated Fe uptake, and  t h e  inhibition 
bv cvcloheximide, are consistent wi th  a , , 

requirement for a n  inducible iron trans- 
porter. Taken  together, t he  experiments 
in yeast and hepatic cells demonstrate a 
remarkable evolutionarv conservation of 
the  mechanisms tha t  unherlie the  pathway 
controlling eukarvotic iron metabolism bv - 
copper. However, there are noteworthy 
differences: in  yeast, t he  C p  homolog is a 
membrane protein tha t  is co-transported 
to  the  cell surface and  is in  continuous 
contact  with the  iron transporter, whereas 
in  matnmalian tissues Cr, is a secreted 
protein, and any interaction with a trans- 
porter is likely to  be transient. This  differ- 
ence may be related to  paracrine require- 
ments for C p  i n  mul t i ce l l~~ la r  organisms. 
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tries. T h e  mechanisms that plants use in 
synthesis have not  yielded to biochetnistry 
or cloning by hybridization to genes encod- 
ing prokaryotic cellulose synthases (1 ). By 
cotnbining chetnical and ultrastructural 
analyses with map-based cloning, we show 
that the  Arabidopsis RSK71 locus encodes a 
glycosyl transferase that comple~nents the  
rsw1 mutant (2 ) .  T h e  temperature-sensitive 
rswl allele disassembles cellulose synthase 
cotnplexes in  the  plasma tnetnbrane ("ro- 
settes"), alters cellulose crystallinity, and 
disrupts morphogenesis. T h e  gene product, 
which is closely related to the  putative cel- 
lulose synthase catalytic s ~ b u n i t  from cot- 
ton fibers ( 3 ) ,  can therefore be used to 
manipulate the  production and physical 
properties of cellulose, while the  tnutant 
links plant rnorphogenesis and cellulose 
production. 

Mutants itnpaired in cellulose produc- 
tion were selected with the  use of a radial 
swelling phenotype (rsw), which mirnics re- 
sponses of wild-type roots to cellulose syn- 
thesis inhibitors such as dichlorobenzoni- 
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Fig. 1. (A) Gas chromatography of aldiiol acetates of methylated sugars from laminafin (top) and 
cellulose (middle) standards and from the glucan purified from the ammonium oxalate fraction from 
shoots of rswl grown at 31 "C (bottom). Coincident peaks show that the rswl glucan is 1 ,4-linked. (B 
through E) Roots frozen in nitrogen slush without cryoprotection were freeze-fractured with the use of 
double replica holders in a Balzers BAF 400T (18). (B) Normal microfibrils in rswl (1 8°C). (C) Rosettes (P 
face) of the mutant are indistinguishable from the wild type at 18"C, but (D) are rare and sometimes 
irregular in rswl seedlings within 3 hours of transfer to 31°C. (E) Particles in rows (arrows) can curve or 
cluster (box) under longer (1 &hour) exposures. Scale bars, 50 nm. 

Fig. 2. (A) Part of contig IV from Arabidopsis chromosome 4 (19) refined with the use of primers 
based on partially sequenced left (L) and right (R) ends to establish YAC overlap by PCR (vertical 
lines), by converting 98300 to a cleaved amplied polymorphic sequence (CAPS) marker and by 
detecting new CoRer polymorphisms in three YAC ends (CAPS marker for yUP5C8RE; RFLP 
markers for EG6C4LE and yUP17GLE; white boxes on the genetic map). (B) Sequences hybridizing 
to EST T20782 lie centrally in cosmid 23H12 and within pRSW1 [cloned into pBIN19 PO)]. The 
14-exon RSWl gene produces a predicted protein product including transmembrane helices 
(hatched) and the D,D,D,QVLRW (8) signature. Conserved regions (black), variable regions (lighter), 
and residue numbers are based on the supplementary material (1 7). (C) Complementation of rswl. 
TI seeds of rswl plants transformed (21) with cosmid 23H12 were selected for kanamycin resistance 
(21 "C over 10 to 12 days). Two days at 31 "C after 5 days at 21 "C caused swelling of rswl (left) but 
not of T2 (center) or wild-type (right) seedlings. (D) Wild-type (inset) and rswl seedlings grown for 10 
days at 31 "C and viewed by cryoscanning electron microscopy. Epidermal cells in all organs of rswl 
plants are misshapen. 

nile. Shoots of rswl seedlings grown at the 
restrictive temperature (3 1 "C) have less 
cellulose than wild-type seedlings (159 + 
19 versus 363 + 28 nmol of glucose per 
milligram of plant dry weight) but more of 
an ammonium oxalateextracted glucan 
(195 versus 58 nmol mg-'), which methyl- 
ation analysis (Fig. 1A) and enzyme diges- 
tion show is P-1,4-linked (4). Facilitated 
extraction and digestion by enzymes and 
trifluoroacetic acid indicate low crystallini- 
ty, the property that makes cellulose resis- 
tant to extraction and digestion. Smaller 
changes in Golgi-synthesized polysaccha- 
rides show that RSWl is specifically in- 
volved in cellulose biosynthesis. 

Rosettes (terminal complexes) are the 
putative hexameric cellulose synthase com- 
plexes of higher plant plasma membranes 
(5). Freeze-fractured root cells of wild type 
and mutant grown at 18°C show cellulose 
microfibrils (Fig. 1B). Rosettes on the P 
face of the mutant plasma membrane at 
18°C (Fig. 1C) resemble those of the wild 
type, but transferring the mutant to 31°C 
reduces rosette numbers within 30 min, 
with extensive loss after 3 hours (Fig. ID) 
and a loss of definition to the terminal 
globules on the E face. Plasma membrane 
particles tend to align in the mutant after 
prolonged exposure to the restrictive tem- 
perature (Fig. 1E). Cortical microtubules 
that align cellulose microfibrils and Golgi 
bodies that synthesize other wall polysac- 
charides appeared unchanged. 

The rswl mutation therefore disassembles 
cellulose synthase complexes, reduces cellu- 
lose accumulation, and causes p-1,4-glucan 
to accumulate in a noncrystalline form. It 
maps (6) to a region of chromosome 4 (Fig. 
2A) to which a mapping program had as- 
signed an expressed sequence tag (EST) that, 
it was deduced, might show weak similari- 
ties to a bacteria1 cellulose synthase (7). 
Full sequence of the EST partial cDNA in- 
deed showed all except the first D of a 
D,D,D,QXXRW signature (8) characterizing 
a heterogeneous group of pmessive P-glyco- 
syl transferases and more extended but still 
weak similarities to a subset (9). Correcting 
radial swelling by transforming rswl (Fig. 
2C) with full-length genomic clones (Fig. 
2B) identical to sequences found on a yeast 
artificial chromosome (YAC) covering the 
mapped site proves that the gene is RSWl. 
The 3.8-kb RSWl transcript is widespread, 
as are misshapen cells in mutant plants 
grown at 31°C (Fig. 2D). A similarly sized 
transcript in the mutant is consistent with 
the mutant allele substituting Val for Ala549 
after a C to T nucleotide change (7). 

Four pieces of evidence make a compel- 
ling case that the RSWl gene product en- 
codes the catalytic subunit of cellulose syn- 
thase: (i) The rswl mutation selectively 
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Fig. 3. Sequence of the pred~cted RSlUl gene product. The D.D,D,QXXRW signature IS bold. con- 
served Cys resdues are underlned. and Ala""substtuted with Val n r sw l )  is bold and underlined. 

inhib,its cellulose syntl~esis and promotes the aiiiely different polymers produced by 
accumulation of a n ~ n c r ~ s t a l l i i l e  p-1,4-glu- enzymes sharing weakly related sequences 
can; (i i)  rsz~ll disassenlhles plasma mem- 
brane rosettes, a plausible mechanisin for 
reducing cellulose and placing the RSWl 
product in  the rosettes or interactiilg with 
them; (iii) the D,D,D,QXXRLYI signature 
identifies the  RSW'I gene product as a pro- 
cessive glycosyl trailsferase (9)  in  fainily 2 of 
invertiilg nucleotide-diphospho-s~~gar gly- 
cosyltransferases (1 0) and ~ i t h  demonstrat- 
ed uridine 5'-diphosphate-glucose binding 
ability in the  highly siinilar cotton celAl  
gene (3);  and (iv) the  wild-type allele cor- 
rects the  mutant's radial swelling that re- 
sults fro111 reduced cellulose synthesis. 

T h e  deduced 122-kD RSLV1 product (Fig. 
3 )  closely resembles the products of Ath -A 
and Ath-B [two filll-length Arabidopsis 
cDNAs ( I  1 ) I ,  of the cotton celA genes pro- 
posed as cellulose synthase catalytic subunits 
( 3 ) ,  and of rice ESTs D48636 (3) and 
I339394 (1 1) .  Architecture is conserved 
(Fig. 2B): Six predicted membrane-spanning 
regions lie close to the COOH terminus, and 
two others separate a n  extended NH,-termi- 
nal region from a central, probably cytoplas- 
mic domain weaklv similar to orokarvotic 
glycosyl transferases' (3 ,  7, 9 ,  12): ~ t r i k k g l y  
variable regions interrupt extended, highly 
conserved regions, \vhich are particularly 
orominent in the central dolnain i 1 I ) .  T h e  , , 

NH2-terminal reglons are heterogeneous es-  
ceDt for a cvsteine-rich domain that mav 
cause protein-protein binding ( 1  3) .  T h e  pre- 
dicted products of five Arnbldopsis genonlic 
sequences (14) diverge further from RSWI, 
Ath-A,  and Ath-B: they are smaller (710 to 
828 amino acids versus 1081 111 RSWI ), lack 
an  extended NH, terminus, varv 111 the nuin- , , 
ber and position of predicted transineinhrane 
helices, retain extensive seauence siinilari- 
ties 111 the central domain hut have major 
insertions and deletions, and differ in their 
D,D,D spacings and QXXRW motifs. ilrabl- 
dopsls EST fragments recently proposed as 
cellulose synthases (15) show little sequence 
similaritv to RSWI. All helone to the laree 
class of Arabidopsis Csl genes (Ycellulose-syg- 
thase-like) 11 61, but weak silnilarities do not 
prove a function in cellulose synthesis given 

(10).  In  our vie\;, only Ath-A and Ath-B of 
the full-length Arnbidopsis genes sufficieiltly 
resemble the functionally characterized 
RSWI to he prime candidates for additional 
cellulose synthases. 

I n  conclusion, chemical and ultrastruc- 
rural changes in  the cellulose-deficient mu- 
tant combine with gene cloning, comple- 
nleiltation of the  mutant, and seiluence 
analyses to show that the RSWI locus en- 
codes the catalytic subunit of cellulose syn- 
thase. T h e  noncrystalline @-1,4-glucan in  
the  shoot of the  r su l  mutant suggests that 
the  mutant allele interruyts assembly of glu- 
can chains into microfibrils. Vile hypothe- 
size that a t  the  restrictive temperature, inu- 
tant synthase complexes disassenlble to 
monomers (or smaller oligomers) undetect- 
able by freeze etching. T h e  inonoillers con- 
tinue producing @-1,4-glucan, hut the  dis- 
persed chains fail to crystallize in  a n  acid- 
resistant form. Crystallization-with conse- 
quences for wall mechanics that are central 
to  i~lorphogenesis and industrial fiber us- 
age-therefore requires assen~hled rosettes. 
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Alopecia Universalis Associated with a Mutation 
in the Human hairless Gene 
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There are several forms of hereditary human hair loss, known collectively as alopecias, 
the molecular bases of which are entirely unknown. A kindred with a rare, recessively 
inherited type of alopecia universalis was used to search for a locus by homozygosity 
mapping, and linkage was established in a 6-centimorgan interval on chromosome 
8p12 (the logarithm of the odds favoring linkage score was 6.1 9). The human homolog 
of a murine gene, hairless, was localized in this interval by radiation hybrid mapping, 
and a missense mutation was found in affected individuals. Human hairless encodes 
a putative single zinc finger transcription factor protein with restricted expression in 
the brain and skin. 

T h e  human hair follicle is a dynamic struc- molecular control of the  signals that regu- 
ture that generates hair through a complex late progression through the hair cycle, al- 
and excluisitely regulated cycle of growth though it is clear that a t  least some poten- 
and remodeling (1) .  Despite the  extensive tially influential regulatory molecules may 
descriptive ~lnderstanding of the hair cycle, play a role (1) .  For example, a knock-out 
currently, very little is known ahout the  mouse with targeted ablation of the  gene 
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gion of several published hair keratin pro- 
moters. Disruption of this potential master 
regulator of hair keratin transcription re- 
sulted in defects in  the positioning and 
angling of the  hair follicles (4) .  More re- 
cently, a mutation in a s t r ~ ~ c t ~ l r a l  protein, 
nlouse desmoglein 3 (encoded hy the  gene 
dsg3), was found to  be the  underlying mu- 
tation in  the  naturally occurring mouse 
phenotype, balding (5). Finally, the  nude 
mouse phenotype, characterized by hairless- 
ness and athymia, was found to he the  result 
of mutations in the  winged-helix nude 

u 

(whn) gene, a inember of the  winged-helix 
class of transcrlotion factors (6). In  addition 
to the complexity of the  signaling pathways, 
in  sheeu, there are over 100 distinct struc- 
tural proteins synthesized by the hair cortex 
and cuticle cells that oroduce the  keratin- 
ised structure of a wool fiher ( 1 ) .  Despite 
these examples of recent progress in  animal 
models, we have only b e g ~ ~ n  to ~lnderstand 
the  control and molecular comolexitv of 
the hair follicle and its cyclic progression in 
humans. 

There are several forms of hereditary 
human hair loss, known collectivelv as alo- 
p e c i a ~ ,  which may represent a dysregulation 
of the cycle of hair growth and remodeling 
(1 ), yet the  nlolecular basis of the alopecias 
has remained largely unexplored (7).  T h e  
most common form of hair loss, known as 
androgenetic alopecia (male pattern hald- 
nesa), 1s believed by some to affect -8096 of 
the  population (7) .  Alopecia areata is a 
common der~natologic disease affecting 
ahout 2.5 million individuals in  the  United 
States alone, which causes round, patchy 
hair loss o n  the scalp (7).  Alopecia areata 
can progress to  involve hair loss from the  
entire scalp; this condition is referred to as 
alopecia totalis. Alopecia universalis (AU) 
is the  term for the  most extreme example of 
disease progression, which results in  the  
complete absence of scalp and body hair 
(7) .  Although a n  autoimmune patho- 
mechanism for alopecia areata has been 
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