5C) (20). The constitutive kinase activation
of all KIT mutants found in the five GISTs
was confirmed in Ba/F3 cells (Fig. 5D) (5,
21).

Although various cells including hemato-
poietic stem cells express both KIT and
CD34 (22), ICCs are the only cells that are
double-positive for KIT and CD34 in normal
GI wall of humans. This strongly suggests
that KIT and CD34 double-positive GISTs
might originate from ICCs, although we can-
not exclude the possibility that ICCs and
GISTs simply show common undifferentiat-
ed characteristics such as those observed in
multipotential. hematopoietic stem cells.

The mechanism by which KIT becomes
constitutively activated appears to be differ-
ent for the tyrosine kinase domain mutant
and the juxtamembrane domain mutant (6,
21). The former is constitutively activated
without forming dimers (21), whereas the
latter constitutively dimerizes without bind-
ing SCF (6, 21). The tyrosine kinase do-
main mutation of KIT has been found only
in mast cell neoplasms (7) and its jux-
tamembrane domain mutation only in
GISTs. The mechanisms by which these
different mutations”cause malignant trans-
formation of different cell types remain to
be investigated.
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Interaction of a Golgi-Associated Kinesin-Like
Protein with Rab6

Arnaud Echard, Florence Jollivet, Olivier Martinez,
Jean-Jacques Lacapére, Annie Rousselet,
Isabelle Janoueix-Lerosey, Bruno Goud*

Rab guanosine triphosphatases regulate vesicular transport and membrane traffic within
eukaryotic cells. Here, a kinesin-like protein that interacts with guanosine triphosphate
(GTP)-bound forms of Rab6 was identified. This protein, termed Rabkinesin-6, was lo-
calized to the Golgi apparatus and shown to play a role in the dynamics of this organelle.
The carboxyl-terminal domain of Rabkinesin-6, which contains the Rab6-interacting do-
main, inhibited the effects of Rab6-GTP on intracellular transport. Thus, a molecular motor
is a potential effector of a Rab protein, and coordinated action between members of these
two families of proteins could control membrane dynamics and directional vesicular traffic.

Stall guanosine triphosphatases (GTPases)
of the Rab family play an essential role in the
processes that underlie the targeting and fu-
sion of transport vesicles with their appropri-
ate acceptor membrane (1). Within the past
few years, several putative effectors that in-
teract with Rab proteins in their GTP-bound
conformation have been identified (2). They
are not related to each other and appear to

fulfill diverse functions. This finding suggests
that Rab proteins have a more complex role
than simply regulating the interaction be-
tween proteins involved in the recognition
of transport vesicles with membranes (3).
On the other hand, it is now well established
that intracellular organelles and vesicles, in-
cluding the endoplasmic reticulum (ER) and
Golgi membranes, move along cytoskeletal
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the yeast two-hybrid assay and
identification of the full-length 174
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formants were patched for 3 days at 30°C on a selective medium lacking tryptophan and leucine (left) or {EL 40}
lacking tryptophan,lleucine‘ anq histidine (right) (8). Growtt‘l_ in the ‘right panel indicates an interaction betwegn F Ctalone Ct+MT
the encoded proteins. WT, wild type. (B) Predicted amino acid sequence of the full-length 174 protein T S R

(Rabkinesin-6) (7). Conserved domains in kinesin and kinesin-like proteins are underlined with solid lines (25).

The interaction region with Rab6 Q72L isolated from the two-hybrid screen [2-H domain, see also (C)] is
underlined with a dotted line. (C) Predicted subdomains of Rabkinesin-6. The NH,-terminal motor domain,
defined by comparison with previously described kinesin motor domains, includes residues 1 to 518. The

Tubulin

Ct

“stalk” region, predominantly an a-helical coiled coil as determined by the Lupas algorithm (26), encompass-

es residues 519 to 796. The putative COOH-terminal globular tail domain includes residues 797 to 887. We indicate the position of the two truncated forms
of Rabkinesin-6 used in this study: Nt (amino acids 1 to 530) and Ct (amino acids 529 to 887). The sequences are deposited in the EMBL database under
accession number Y09632. (D) Adenosine triphosphate—dependent MT-binding activity of Rabkinesin-6 motor domain. (Left) Purified his-tagged predicted
motor domain (Nt) was incubated with or without taxol-stabilized MTs. After centrifugation through a sucrose cushion, equal amounts of high-speed
supernatants (S) and high-speed pellets (P) were resolved by SDS-PAGE, and the proteins were stained with Coomassie blue. (Right) Pellets containing Nt
bound to MTs (Nt-MT complex) were incubated in the presence of 10 mM Mg-ATP, ultracentrifuged and analyzed as above. No release of Nt was observed
without ATP (9). (E) Microtubule-activated ATPase activity of predicted Rabkinesin-6 motor domain. Purified his-tagged Nt (55 nM) was incubated with
increasing concentrations of taxol-stabilized MTs in the presence of 1 mM Mg-ATP. Adenosine diphosphate release was measured by the NADH
coupled-enzymes procedure. The data were fitted to a hyperbola (maximum rate, 1.2 wmol min~! mg~"; half-maximal activity, 50 nM). (F) Ct domain of
Rabkinesin-6 binds to taxol-stabilized MTs. Purified his-tagged Ct was incubated with or without taxol-stabilized MTs and the samples were analyzed as

described for Nt.

elements through an interaction with motor
proteins (4, 5). However, the molecular links
between the protein machinery involved in
the generation and targeting or fusion of
transport vesicles and motors are still largely
unknown.

Rab6, a ubiquitous Rab associated with
Golgi and trans-Golgi network (TGN)
membranes, regulates transport within this
organelle (6). To identify proteins that in-
teract with the GTP-bound form of Rab6,
we used the GTPase-defective mutant Rab6
Gln?—Leu™ (Q72L) (7) as bait in a yeast
two-hybrid screen of a mouse embryo ex-
pression library. Screening of 12 X 10°
clones yielded five independent clones that
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interacted strongly with Rab6 Q72L, but
not with p2lras or lamin, which were used
as specificity controls (8). One of them,
clone 174, contained a 408-base pair
cDNA insert corresponding to an open
reading frame (ORF) encoding for a 136—
amino acid polypeptide. The 174 polypep-
tide appeared to be Rab6-specific, because
no interaction was detected with Rab5
Gln”—Leu” (Q79L) or Rab? GIn®—
Leu®? (Q67L), which are GTPase-defective
mutants of two functionally distinct Rab
proteins (Fig. 1A). The 174 polypeptide
was found to interact with Rab6 Asn!?6—
Ile!?® (N126]) (a protein expected to be in
vivo in its GTP-bound conformation) and,
more weakly, with wild-type Rab6 (Fig.
1A). A mutation in the effector domain of
Rab6 [[le**—Glu* (I146E), analogous to a
mutation that impairs Rab3A activity (3)]
abolished the interaction between Rab6
Q72L and the 174 polypeptide {(double mu-
tant Rab6 I146E,Q72L) (Fig. 1A). On the

other hand, no interaction was found with
the guanosine diphosphate—bound mutants
Rab6 Thr2’—Asn?’ (T27N) and Rab6
Gln?2—=Val?2 (Q22V). Thus, the 174
polypeptide preferentially interacts with the
GTP-bound forms of Rab6, and this inter-
action is likely to involve the effector do-
main of Rab6.

Northern (RNA) blot analysis with the
174 cDNA fragment as a probe showed the
presence of a predominant 3.6-kb mRNA
ubiquitously expressed in various mouse tis-
sue extracts, although at higher amounts in
the spleen and testis (9). Using this probe
to screen a mouse testis cDNA library, we
isolated a clone containing a potential ini-
tiator ATG codon, several stop codons in
frame upstream of this ATG, and a polyad-
enylation signal in the 3’ noncoding region
(10). The predicted protein sequence (Fig.
1B) of this ORF consisted of 887 amino
acids and had a calculated relative molecu-

lar weight of 99,877. The full-length 174
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protein contained sequence motifs con-
served among kinesin-like proteins that are
involved in adenosine triphosphate (ATP)
binding and ATP hydrolysis. In addition, it
displayed a conventional kinesin organiza-
tion, with an NH,-terminal motor domain
followed by a region predicted to form an -
helical coiled-coil stalk and a tail domain
(Fig. 1C) (5, 11). To establish further that
the 174 protein belongs to the kinesin-like
protein family, we performed microtubule
(MT)-binding and MT-activated adeno-
sine triphosphatase (ATPase) activity as-
says using the bacterially expressed predict-
ed motor domain of the protein (plus 12
amino acids) (Nt, residues 1 to 530) (Fig.
1C) (12). Purified Nt bound in vitro to
taxol-stabilized MTs (Fig. 1D) (13). In ad-
dition, MT-associated Nt was released by
ATP (Fig. 1D). A low intrinsic ATPase
activity was found in the absence of MTs
(6.2 nmol min~! mg™!). The addition of
taxol-stabilized MTs resulted in a marked
increase in the rate of ATP hydrolysis (1.2
pmol min~! mg™!) (Fig. 1E). This increase
corresponded to about a 200-fold increase
in the ATPase activity induced by MTs, a
value consistent with those measured for
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other kinesin-like proteins (5). Altogether,
the above data indicate that the full-length
174 protein is a member of the kinesin-like
protein family. In available data banks, the
highest identity score was found with the
CHOIL1 protein (31% identity and 52.5%
similarity over the whole protein and 38.5%
identity and 61% similarity over the pre-
dicted motor domain) (14). By the yeast
two-hybrid assay, the full-length 174 pro-
tein gave the same interaction pattern as
the 174 polypeptide (9) and interacted with
Rab6 in vivo (see below). Hence, we
termed it Rabkinesin-6.

We next raised an antiserum to the bac-
terially expressed 174 polypeptide. In agree-
ment with the predicted molecular mass of
Rabkinesin-6, the affinity-purified antibody
predominantly recognized a protein migrat-
ing with an apparent molecular mass of 100
kD in a total lysate of Hela cells (Fig. 2A)
(15). Fractionation of the lysate showed
that the major pool of endogenous Rab-
kinesin-6 was associated with the mem-
brane fraction, even under experimental
conditions (4°C) that depolymerize MTs.
The localization of endogenous Rabkine-
sin-6 was then examined by confocal im-

B

munofluorescence analysis (16). The anti-
body decorated Golgi-like structures that
were colabeled by a monoclonal antibody
(CTR 433) that recognizes a medial Golgi
marker (17) (Fig. 2B). CTR 433 and Rab6
staining are almost indistinguishable by im-
munofluorescence (6). However, Rabkine-
sin-6 staining appeared more discontinuous
and punctuated than that of the CTR 433
antibody (Fig. 2B, left) and sometimes
closely apposed but not fully congruent
with it (Fig. 2B, right). This staining sug-
gests that Rabkinesin-6 may be more con-
centrated in subdomains of Golgi mem-
branes or in Golgi-associated vesicles (or in
both). In addition to Golgi and cytoplasm,
we noticed a weéak nuclear staining (Fig.
2B) that might be caused by antibody cross-
reaction with a nuclear kinesin-like protein.

To investigate the function of Rabkine-
sin-6 in vivo, we tagged the protein with
green fluorescent protein (GFP) (to avoid
the detection of endogenous protein with
the antibody) and transiently overexpressed
it in HeLa cells (18). The bulk of overex-
pressed Rabkinesin-6 (Fig. 3, A and B,
green staining) localized to MTs [as dem-
onstrated by costaining with antibody to
tubulin (anti-tubulin) (9)]. In some cells
(likely those expressing lower amounts of
Rabkinesin-6), the MT staining was less
prominent, and GFP-Rabkinesin-6 was
more localized to the Golgi area of the cells
(Fig. 3B). The most striking effect of the
overexpression of Rabkinesin-6 was the dis-
persal of the Golgi apparatus into small
structures scattered within the cytoplasm
(Fig. 3A, red staining). Such an effect ap-
peared to be correlated with the amount of
overexpression of Rabkinesin-6 (compare
Fig. 3, A and B). Golgi dispersal was docu-
mented with several Golgi and TGN mark-
ers, but no marked alteration of the distri-
bution of endosomal and lysosomal com-
partments was observed (9). In contrast,
overexpression of Nt that lacks the stalk
region and the COOH-terminus tail, which
is thought to be involved in the interaction
of kinesin-like proteins with their cargoes
(19), did not induce a dispersion of the
Golgi apparatus (20) (Fig. 3C). Altogether,
the above data suggest a role for Rabkine-
sin-6 in the dynamics of the Golgi appara-
tus. Rabkinesin-6 would be expected to be a
plus-end-directed motor. The overexpres-
sion of Rabkinesin-6 may then increase the
concentration of the protein in Golgi mem-
branes and force their movement toward
the plus end of MTs, located near the ER
and the cell periphery. The microtubular
cytoskeleton appeared “bundled” in cells
overexpressing Rabkinesin-6. However, we
found that the Ct domain of Rabkinesin-6
was able to bind directly in vitro and in

vivo to MTs (12, 13) (Figs. 1F and 3D),
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Fig. 3. Effect of the overexpression of GFP-
Rabkinesin-6 and Nt or Ct domains of the protein
on the morphology of the Golgi apparatus. (A and
B) Rabkinesin-6 tagged with GFP was transiently
expressed in Hela cells. After 18 hours of trans-
fection, cells were fixed with methanol and stained
with CTR 433 antibody to Golgi marker (red stain-
ing). In cells expressing high amounts of Rabkine-
sin-6 (A), the Golgi was dispersed into small struc-
tures scattered throughout the cytoplasm. A sim-
ilar effect was seen with untagged or myc-tagged
Rabkinesin-6 or by the overexpression of Rabki-
nesin-6 with the vaccinia system (6). In cells over-
expressing lower amounts of Rabkinesin-6 (B),
GFP-Rabkinesin-6 was more localized to the
Golgi area, and the Golgi was less dispersed. The
right panels in (A) and (B) show the superimposi-
tion of the two labelings. (C) Myc-tagged Nt (pre-
dicted motor domain) was overexpressed in HelLa
cells with the vaccinia system. Nt was revealed

A

B
with 9E10 anti-myc (red staining), and Golgi - - -
(green staining) was decorated with a rabbit anti- C D

serum to galactosyltransferase. The figure shows the su-
perimposition of the two labelings. (D) Ct (stalk plus tail
domain of Rabkinesin-6) was overexpressed in Hela
cells with the vaccinia system. Ct was revealed with the
antiserum to Rabkinesin-6 (red staining), and Golgi (green
staining) was revealed with the CTR 433 antibody. The
figure shows the superimposition of the two labelings.
Bars, 10 pm.
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Fig. 4. Rabkinesin-6 and the Ct domain form in vivo complexes with Rab6-GTP, and Ct partially reverses the effect of RabQ72L p kg
on the transport of SEAP. (A and B) Hela cells were cotransfected with myc-tagged Rabkinesin-6—encoding plasmids (A) and
myc-tagged Nt- or Ct-encoding plasmids (B) and either pGEM-1 (control) or plasmids encoding for Rab6 constructs. After a % = 40
20-min metabolic labeling, complexes were immunoprecipitated with SE10 anti-myc. (A) (Left) Cell lysates (1/9 of total) were w £
immunoprecipitated with both anti-Rab6 and anti-myc to determine the amounts of overexpressed Rab6 constructs and 3 § =
Rabkinesin-6 in cell lysates. (Right) Rab6 Q72L and wild-type Rab6, but not Rab6 146E,Q72L, were immunoprecipitated by 5 20
anti-myc. The coimmunoprecipitating band was identified as Rab6 by reimmunoprecipitation with anti-Rab6 (9). (B) Rab6 Q72L g i
was coimmunoprecipitated with Ct (right) but not with Nt (left). The band migrating under Rab6 in cells expressing Ct likely <
represents a degradation product of Ct. (C) (Left) HeLa cells were cotransfected with SEAP and either the control or Rabkinesin- 0

6-, Nt-, or Ct-encoding plasmids. (Right) HelLa cells were cotransfected with SEAP and either Rab6 Q72L, Rab6 Q72L plus
Nt-encoding plasmids, or Rab6 Q72L plus Ct-encoding plasmids. Intracellular SEAP was then immunoprecipitated and analyzed
after treatment with endo H by SDS-PAGE and autoradiography (6). M and | represent the mature and immature forms of
intracellular SEAP, respectively. The arrow on the right indicates the presence of an immature form of SEAP in cells cotransfected
with Ct plus Rab6 Q72L. (D) SEAP secreted in media of cells transfected with either pGEM-1 (control), Rab6 Q72L, Rab6 Q72L plus Nt-encoding plasmids,
or Rab6 Q72L plus Ct-encoding plasmids was immunoprecipitated and quantified as described above. The results are expressed as the percent of SEAP
found in the medium of control cells. Means, = SD of three independent experiments.

+ Nt

Rab6 Q72L
+Ct

Rab6 Q72L
Rabé Q72L

which suggests that Rabkinesin-6 carries, as
conventional kinesin and the kinesin-like
protein ncd possibly do (21), an MT-bind-
ing site outside its motor domain. This find-
ing raises the possibility that Rabkinesin-6
could cross bridge the MTs, explaining such
a “bundling” effect.

To investigate the functional relation be-
tween Rab6 and Rabkinesin-6, we first dem-
onstrated the direct interaction in vivo be-
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tween Rab6 and Rabkinesin-6. Myc-tagged
Rabkinesin-6 was coexpressed with various
Rab6 constructs in HeLa cells (22). Rab6
Q721 and a lower amount of wild-type Rab6
could be immunoprecipitated with anti-myc
(Fig. 4A). Conversely, the double mutant
Rab6 146E,Q72L was not coimmunoprecipi-
tated, in good agreement with the data from
the two-hybrid assay (Fig. 4A). To further
define the interaction between Rab6 and

Rabkinesin-6, we coexpressed Nt or Ct do-
mains of Rabkinesin-6 with Rab6 constructs.
Nt did not form complexes with Rab6,
which suggests that Rab6 does not interact
directly with the motor domain of Rabkine-
sin-6 (Fig. 4B). On the other hand, Rab6
Q72L was coimmunoprecipitated with Ct
(Fig. 4B), consistent with the location of the
Rab6-interacting domain identified by the
yeast two-hybrid assay.
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We then determined whether overex-
pression of Rabkinesin-6 affects the trans-
port of a secretory marker, such as the se-

creted form of alkaline phosphatase
(SEAP), as does overexpression of Rab6-
GTP (6). No marked alteration of the se-
cretory process was observed in HelLa cells
overexpressing Rabkinesin-6, Nt, or Ct do-
mains of the protein (23) (Fig. 4C). The
two forms of intracellular SEAP, one corre-
sponding to the Golgi-associated, fully gly-
cosylated protein (mature) and the other to
immature SEAP still associated with the
ER, were detectable in cells overexpressing
Rabkinesin-6, Ct, or Nt (although the ma-
ture form of SEAP appeared as a doublet in
these cells) (Fig. 4C, left). In addition, the
release of SEAP in the extracellular medi-
um was comparable with that found in con-
trol cells (9). However, the coexpression of
Ct with Rab6 Q72L partially reversed the
strong effect of Rab6 Q72L on intracellular
transport of SEAP (Fig. 4C, right). Whereas
the immature form of SEAP was no longer
detectable in cells overexpressing Rab6
Q72L [because of the relocalization of Golgi
glycosyltransferases into the ER (6)], this
form reappeared in cells expressing both Ct
and Rab6 Q72L (Fig. 4C, right, arrow). In
addition, a release of the secretory block
induced by Rab6 Q72L was observed in
cells coexpressing Ct (Fig. 4D). On the
other hand, a glycosylation pattern of SEAP
similar to the one obtained in cells express-
ing Rab6 Q72L was found in cells cotrans-
fected with Rab6 Q72L and Nt (Fig. 4C,
right), and no release of the secretory block
induced by Rab6 Q72L was observed in
these cells (Fig. 4D). Thus, Ct, which con-
tains the Rabkinesin-6—interacting domain,
but not Nt, partially suppressed the Rab6
QT72L effect. A fragmentation of the Golgi
could be observed in cells that overex-
pressed Ct alone (Fig. 3D). A similar effect
could be seen in cells overexpressing Rab6
[46E (mutation in the effector domain) (9).
One possibility is that the overexpression of
Ct alters the function of other Rab6 effec-
tors involved in Golgi dynamics by inter-
fering with their binding to the Rab6 effec-
tor domain.

We have previously shown that Rab6-
GTP effects, that is, the inhibition of intra-
Golgi anterograde transport and the redis-
tribution of Golgi proteins into the ER,
require the integrity of MTs (6). A tenta-
tive hypothesis is that Rab6 regulates the
association and dissociation of Rabkine-
sin-6 with MTs, which points to a role for
Rabé in the movement of Golgi membranes
and their associated vesicles along MTs
through an interaction with Rabkinesin-6.
This role would be consistent with the pro-
posed role for Rab6 in retrograde membrane
traffic at the level of the Golgi apparatus
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(6), because such traffic is directed toward

. the plus end of MTs in this region of the

cell. However, the overexpression of Rabki-
nesin-6 alone was not sufficient to redistrib-
ute Golgi resident proteins into the ER, as
does the overexpression of Rab6-GTP (6).
In addition, the Golgi complex, although
dispersed, remained functional in cells over-
expressing Rabkinesin-6 (Fig. 4C). A likely
interpretation is that, in addition to Rabki-
nesin-6, Rab6 interacts with other effectors
that have yet to be characterized.

Thus, we have identified a kinesin-like
protein associated with the Golgi appara-
tus that interacts with GTP-bound forms
of Rab6. A possible link between some
GTPases of the Rab family and the cy-
toskeleton has been documented (24).
The present study suggests that this
connection may be at the level of the
molecular motors. An attractive hypothe-
sis is that Rab proteins (or at least some
of them) act in concert with molecular
motors to regulate directional membrane
transport and dynamics of intracellular
organelles.
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