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Gain-of-Function Mutations of c-kit in Human 
Gastrointestinal Stromal Tumors 

Seiichi Hirota,* Koji Isozaki,* Yasuhiro Moriyama, 
Koji Hashimoto, Toshirou Nishida, Shingo Ishiguro, 
Kiyoshi Kawano, Masato Hanada, Aki hi ko Kurata, 

Masashi Takeda, Ghulam Muhammad Tunio, Yuji Matsuzawa, 
Yuzuru Kanakura, Yasuhisa Shinomura, Yukihiko Kitamura? 

Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors in 
the human digestive tract, but their molecular etiology and cellular origin are unknown. 
Sequencing of c-kit complementary DNA, which encodes a proto-oncogenic receptor 
tyrosine kinase (KIT), from five GlSTs revealed mutations in the region between the 
transmembrane and tyrosine kinase domains. All of the corresponding mutant KIT 
proteins were constitutively activated without the KIT ligand, stem cell factor (SCF). 
Stable transfection of the mutant c-kit complementary DNAs induced malignant trans- 
formation of BalF3 murine lymphoid cells, suggesting that the mutations contribute to 
tumor development. GlSTs may originate from the interstitial cells of Cajal (ICCs) because 
the development of lCCs is dependent on the SCF-KIT interaction and because, like 
GISTs, these cells express both KIT and CD34. 

T h e  c-itit proto-oncogene encodes a type tations of the c-itit gene have been found in 
I11 receptor tyrosine kinase (KIT) (11,  the several tumor mast cell lines of rodents and 
ligand of which is S C F  (2) .  SCF-KIT inter- h ~ u n a n s  (5, 6)  and in mast cell tumors of 
action is essential for development of me- h ~ u n a n s  (7). Here we invest~gate the  muta- 
lanocytes, erythrocytes, germ cells, mast tional status of c-kit in mesenchymal tulnors 
cells and ICCs (3 ,4 ) .  Gain-of-f~~nct ion mu- of the human gastrointestinal (GI )  tract. 
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We collected 58 mesenchymal tumors 
that developed in the GI wall (4 in the 
esophagus, 36 in the stomach, 14 in the 
small intestine, and 4 in the large intestine). 
KIT expression was examined by immuno- 
histochemistry (8). Eight authentic leiomyo- 
mas and an authentic schwannoma did not 
express KIT. The remaining 49 mesenchy- 
ma1 tumors were diagnosed as gastrointesti- 
nal stromal tumors (GISTs), and 94% (461 
49) of these expressed KIT. Examination of 
these tumors for expression of CD34, which 
is a reliable marker for GISTs (9), revealed 
that 82% (40149) were CD34-positive, and 
78% (38149) were positive for both KIT and 
CD34 (Fig. 1, A to I). Three of five KIT- 
negative GISTs were also CD34-negative. 

We compared the immunohistochemi- 
cal characteristics of GISTs with those of 
ICCs, cells that regulate autonomous con- 
traction of the GI tract (4). ICCs are locat- 
ed in and near the circular muscle layer of 
the stomach (1 O), small intestine (1 1 ), and 
large intestine (12). Because ICCs of the 
small intestine surrounding myenteric gan- 
glion cells are easily identified by their spe- 
cific localization, we examined the immu- 
nohistochemical characteristics of these 
cells and found that they were double-pos- 
itive for KIT and CD34 (Fig. 2, A to G). 
ICCs in the circular muscle layer of the 
stomach and small intestine and ICCs in 
the myenteric plexus region and circular 
muscle layer of the large intestine were also 
double-positive for KIT and CD34. 

We obtained the complete coding region 
of c-kit cDNA from six GISTs and control 
tissues using the reverse transcrip- 
tase-polymerase chain reaction (RT-PCR) 
(1 3). Ten independent c-kit clones were ob- 
tained from each sample. In 5 of the 6 GISTs 
(GIST 1 to 5), 4 to 6 clones out of 10 
examined showed mutations in the region 
between the transmembrane and tyrosine ki- 
nase domains (hereafter called juxtamem- 
brane domain) (Fig. 3). These mutations 
were located within an 11-amino acid 
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stretch (Lys-550 to Val-560), but at noniden- 
tical sites. No mutations were detectable in 
other domains of c-kit cDNA. Because -50% 
of the cDNA clones from each GIST did not 
show any mutations, we conclude that only 
one of the two c-kit alleles was mutated in 
each case. Direct sequencing of the PCR 
products confirmed the mutations in the jux- 

tamembrane domain of c-kit cDNA in the 
five GISTs. 

We next examined whether the c-kit mu- 
tations found in the GISTs resulted in con- 
stitutive activation of the c-kit receptor ty- 
rosine kinase by transient introduction of the 
mutant c-kit cDNAs into the 293T human 
embryonic kidney (HEK) cell line (5, 14, 

Fig. 1. Coexpression of KIT and CD34 in human GISTs. (A to C) Serial sections of a tumor that 
developed in the muscle layers of the stomach. (D to F) Higher magnification of (A) to (C). (A) and (D) are 
stained with hematoxylin and eosin. The boundary of the tumor is indicated by arrows in (A). (B) and (E) 
are stained with anti-KIT and (C) and (F) with anti-CD34 (8). Arrowheads in (A) to (C) indicate that 
endothelial cells of blood vessels express CD34 but not KIT. Im; longitudinal muscle layer. (G to I) 
Coexpression of KIT and CD34 in another GIST, also from the stomach, demonstrated by confocal laser 
scanning microscopy (8). (G) Binding of rabbi anti-KIT to tumor cells demonstrated by FITC-labeled 
anti-rabbi IgG (green). (H) Binding of mouse anti-CD34 to tumor cells demonstrated by RPE-labeled 
anti-mouse IgG (red). (I) Merged confocal image of (G) and (H) showing coexpression of KIT and CD34 in 
tumor cells (yellow). Bars in (A) to (C), 50 pm; in (D) to (I),  100 pm. 

Fig. 2. Coexpression of KIT and CD34 in lCCs surrounding myenteric ganglion cells in normal human small 
intestine. (A and B) Serial sections of the normal human small intestine. (C and D) Higher magnification of (A) 
and (B), respectively. (A) and (C) are stained with anti-KIT and (B) and (D) are stained with anti-CD34 (8). The 
localization of KIT and CD34 double-positive cells is consistent with that of ICCs, which are present between 
the circular muscle layer (cm) and the longitudinal muscle layer (Im), and surrounding the myenteric ganglion 
cells (gc) (1 1). (E to G) Demonstration by confocal laser scanning microscopy (8). (E) Binding of rabbit anti-KIT. 
(F) Binding of mouse anti-CD34. (G) Merged confocal image of (E) and (F). Arrows in (F) and (G) show 
endothelial cells and fibroblast-like cells that express CD34 but not KIT. Bars in (A) to (G), 50 pm. 
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Fig. 3. Mutations of c-kit in GISTs. 
GlST 1 showed an in-frame dele- 
tion of 6 base pairs (bp). GlST 2 
showed an in-frame deletion of 15 
bp. GlST 3 showed the same in- 
frame deletion as observed in 
GlST 2 and an additional point mu- 
tation at codon 550 (AAA to ATA) 
that resulted in a Ly~~~O+l le  sub- 
stitution. GlST 4 showed a point 
mutation at codon 559 (GTT to 

KIT 

SP EC TM lM TKI KI TK2 

NH 2 COOH 

GISTS and Mast cell neoplasms 
tumor mast cell lines Asp416 to Val 

549 5M1 570 581 
7 7 7 7 

Wildtype Q K P M Y E V Q W K V V E E I N G  N N Y V Y I D P T Q L P Y D H K  

GAT) that resulted in a 
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tamembrane domain of the 
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of different lengths (I), so the amino acid numbering in the FMA3 KIT is different. Abbreviations used 
are as follows: SP, signal peptide; EC, extracellular domain; TM, transmembrane domain; JM, 
juxtamembrane domain; TK1 and TK2, tyrosine kinase domains; and KI, kinase insert. Abbreviations 
forthe amino acid residues are asfollows: D, Asp; E, Glu; G, Gly; H, His; I, Ile; K, Lys; L, Leu; M, Met; 
N, Asn; P, Pro; Q, Gln; T, Thr; V, Val; W, Trp; and Y, Tyr. 

A HMC-1 GISTS B HMC-1 GISTS 

n n m n n n n n n  
rhSCF - + - + - + - + - + - + - + - + - +  - - -  -" --r 

!dl 
!a 

Anti- -.- +5---- -145 - 145 

P-Tyr '-&b*- A 
-125 

125 

Anti- 
KIT 

15). The wild-type c-kit cDNA was intro- 
duced as a negative control, and the tyrosine 
kinase domain mutant and the juxtamem- 
brane domain mutant found in the HMC-1 
human mast cell leukemia cell line (5) were 
introduced as positive controls. Wild-type 
KIT was phosphorylated on tyrosine only 
when recombinant human (rh) SCF was add- 
ed to the culture medium (Fig. 4A). In con- 
trast, the gain-of-function KIT mutants 
found in HMC-1 cells were phosphorylated 
on tyrosine without the addition of rhSCF, as 
reported previously (5). The magnitude of 
the constitutive tyrosine phosphorylation 
was greater in the tyrosine kinase domain 
mutant than in the juxtamembrane domain 
mutant. The c-kit mutants found in GISTs 
also showed the constitutive tyrosine phos- 
phorylation in 293T cells without rhSCF 
(Fig. 4A). The constitutive tyrosine phospho- 
rylation of the juxtamembrane mutant of 
HMC-1 cells was of similar magnitude to that 
of the juxtamembrane mutants of GISTs. In 
in vitro kinase assays (16), the c-kit mutants 
found in the GISTs exhibited constitutive 
kinase activation that was similar in magni- 
tude to that of the juxtamembrane domain 
mutant of HMC-1 cells (5) (Fig. 4B). 

T o  investigate the biological consequenc- 
es of the mutant c-kit, we introduced the 
c-kit mutations found in the GISTs into the 
mouse c-kit cDNA (17) and then stably 
transfected the cDNA into the interleukin 3 
(IL-3)-dependent BaF3 murine lymphoid 
cell line (18). As a control, mouse wild-type 
c-kit cDNA was also transfected into BaF3 
cells. We estimated BaE3 cell vroliferation 

Fig. 4. Constitutive activation of 
using an MTT colorimetric assa; (19). BaF3 

145 the mutant KIT found in cells with the wild-type murine c-kit grew in 
125 

The mutant c-kit cDNAs found in the presence of either recombinant mouse 

five GISTS were transfected into ( m )  IL-3 or mSCF; BaF3 cells wi th the 
293T cells. Human wild-type c-kit cDNA and mutant c-kit cDNAs found in the HMC-1 cells (6, 27) mutated murine c-kit grew autonomously 
were also transfected as controls. (A) Tyrosine phosphorylation was examined with orwithout rhSCF without mIL-3  and mSCF (Fig. 5, A and 
stimulation (75). (B) Immune complex kinase assay carried out without rhSCF stimulation (76). B). BaF3 cells wi th the mutated murine c-kit 

also grew autonomously in nude mice (Fig. 

4 0Jd' 
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Fig. 5. Autonomous proliferation of BdF3 cells transfected with mutated 
murine c-kit in culture and in nude mice. (A and B) MTT colorimetric assay (79) 
in the presence of rmlL-3 (A) or rmSCF (B). Data are expressed as the mean of 
four wells. Untransfected BdF3 cells (O), BdF3 cells with the murine wild-type 
c-kit (O), and BdF3 cells with the murine mutated c-kit [GIST 1 (4, GlST 2 (a), 

Days after injection 

GIST3 0, GIST4 (.), and GIST5 (x). (C) Development of tumors in nude mice 
(20) after injection of the BdF3 cells with each mutated c-kit. The original BdF3 
cells and Ba/F3 cells with murine wild-type c-kit did not form tumors. Data are 
expressed as the mean of results in five mice. (D) Immune complex kinase 
assay (76). BdF3 cells with various c-kit cDNAs were cultured without rmSCF. 
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5C) (20). The constitutive kinase activation 
of all KIT mutants found in the five GISTs 
was confirmed in Ba/F3 cells (Fig. 5D) (5, 
21). 

Although various cells including hemato
poietic stem cells express both KIT and 
CD34 (22), ICCs are the only cells that are 
double-positive for KIT and CD34 in normal 
GI wall of humans. This strongly suggests 
that KIT and CD34 double-positive GISTs 
might originate from ICCs, although we can
not exclude the possibility that ICCs and 
GISTs simply show common undifferentiat
ed characteristics such as those observed in 
multipotentiaL hematopoietic stem cells. 

The mechanism by which KIT becomes 
constitutively activated appears to be differ
ent for the tyrosine kinase domain mutant 
and the juxtamembrane domain mutant (6, 
21). The former is constitutively activated 
without forming dimers (21), whereas the 
latter constitutively dimerizes without bind
ing SCF (6, 21). The tyrosine kinase do
main mutation of KIT has been found only 
in mast cell neoplasms (7) and its jux
tamembrane domain mutation only in 
GISTs. The mechanisms by which these 
different mutationsvcause malignant trans
formation of different cell types remain to 
be investigated. 
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Interaction of a Golgi-Associated Kinesin-Like 
Protein with Rab6 
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Rab guanosine triphosphatases regulate vesicular transport and membrane traffic within 
eukaryotic cells. Here, a kinesin-like protein that interacts with guanosine triphosphate 
(GTP)-bound forms of Rab6 was identified. This protein, termed Rabkinesin-6, was lo
calized to the Golgi apparatus and shown to play a role in the dynamics of this organelle. 
The carboxyl-terminal domain of Rabkinesin-6, which contains the Rab6-interacting do
main, inhibited the effects of Rab6-GTP on intracellular transport. Thus, a molecular motor 
is a potential effector of a Rab protein, and coordinated action between members of these 
two families of proteins could control membrane dynamics and directional vesicular traffic. 

Omall guanosine triphosphatases (GTPases) 
of the Rab family play an essential role in the 
processes that underlie the targeting and fu
sion of transport vesicles with their appropri
ate acceptor membrane (I). Within the past 
few years, several putative effectors that in
teract with Rab proteins in their GTP-bound 
conformation have been identified (2). They 
are not related to each other and appear to 

fulfill diverse functions. This finding suggests 
that Rab proteins have a more complex role 
than simply regulating the interaction be
tween proteins involved in the recognition 
of transport vesicles with membranes (3). 
On the other hand, it is now well established 
that intracellular organelles and vesicles, in
cluding the endoplasmic reticulum (ER) and 
Golgi membranes, move along cytoskeletal 
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