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Gain-of-Function Mutations of c-kitin Human
Gastrointestinal Stromal Tumors

Seiichi Hirota,” Koji Isozaki,* Yasuhiro Moriyama,

Koji Hashimoto, Toshirou Nishida, Shingo. Ishiguro,
Kiyoshi Kawano, Masato Hanada, Akihiko Kurata,
Masashi Takeda, Ghulam Muhammad Tunio, Yuji Matsuzawa,
Yuzuru Kanakura, Yasuhisa Shinomura, Yukihiko Kitamuraf

Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors in
the human digestive tract, but their molecular etiology and celiular origin are unknown.
Sequencing of c-kit complementary DNA, which encodes a proto-oncogenic receptor
tyrosine kinase (KIT), from five GISTs revealed mutations in the region between the
transmembrane and tyrosine kinase domains. All of the corresponding mutant KIT
proteins were constitutively activated without the KIT ligand, stem cell factor (SCF).
Stable transfection of the mutant c-kit complementary DNAs induced malignant trans-
formation of Ba/F3 murine lymphoid cells, suggesting that the mutations contribute to
tumor development. GISTs may originate from the interstitial cells of Cajal (ICCs) because
the development of ICCs is dependent on the SCF-KIT interaction and because, like
GISTs, these cells express both KIT and CD34.

The c-kit proto-oncogene encodes a type
III receptor tyrosine kinase (KIT) (1), the
ligand of which is SCF (2). SCF-KIT inter-
action is essential for development of me-
lanocytes, erythrocytes, germ cells, mast
cells and ICCs (3, 4). Gain-of-function mu-

tations of the c-kit gene have been found in
several tumor mast cell lines of rodents and
humans (5, 6) and in mast cell tumors of
humans (7). Here we investigate the muta-
tional status of c-kit in mesenchymal tumors
of the human gastrointestinal (GI) tract.
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We collected 58 mesenchymal tumors
that developed in the GI wall (4 in the
esophagus, 36 in the stomach, 14 in the
small intestine, and 4 in the large intestine).
KIT expression was examined by immuno-
histochemistry (8). Eight authentic leiomyo-
mas and an authentic schwannoma did not
express KIT. The remaining 49 mesenchy-
mal tumors were diagnosed as gastrointesti-
nal stromal tumors (GISTs), and 94% (46/
49) of these expressed KIT. Examination of
these tumors for expression of CD34, which
is a reliable marker for GISTs (9), revealed
that 82% (40/49) were CD34-positive, and
78% (38/49) were positive for both KIT and
CD34 (Fig. 1, A to I). Three of five KIT-
negative GISTs were also CD34-negative.

We compared the immunohistochemi-
cal characteristics of GISTs with those of
ICCs, cells that regulate autonomous con-
traction of the GI tract (4). ICCs are locat-
ed in and near the circular muscle layer of
the stomach (10), small intestine (11), and
large intestine (12). Because ICCs of the
small intestine surrounding myenteric gan-
glion cells are easily identified by their spe-
cific localization, we examined the immu-
nohistochemical characteristics of these
cells and found that they were double-pos-
itive for KIT and CD34 (Fig. 2, A to G).
ICCs in the circular muscle layer of the
stomach and small intestine and ICCs in
the myenteric plexus region and circular
muscle layer of the large intestine were also
double-positive for KIT and CD34.

We obtained the complete coding region
of c-kit cDNA from six GISTs and control
tissues using the reverse transcrip-
tase—polymerase chain reaction (RT-PCR)
(13). Ten independent c-kit clones were ob-
tained from each sample. In 5 of the 6 GISTs
(GIST 1 to 5), 4 to 6 clones out of 10
examined showed mutations in the region
between the transmembrane and tyrosine ki-
nase domains (hereafter called juxtamem-
brane domain) (Fig. 3). These mutations
were located within an 1l-amino acid
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stretch (Lys-550 to Val-560), but at noniden-
tical sites. No mutations were detectable in
other domains of c-kit cDNA. Because ~50%
of the cDNA clones from each GIST did not
show any mutations, we conclude that only
one of the two c-kit alleles was mutated in
each case. Direct sequencing of the PCR
products confirmed the mutations in the jux-

tamembrane domain of c-kit cDNA in the
five GISTs.

We next examined whether the c-kit mu-
tations found in the GISTs resulted in con-
stitutive activation of the c-kit receptor ty-
rosine kinase by transient introduction of the
mutant c-kit cDNAs into the 293T human
embryonic kidney (HEK) cell line (5, 14,

Fig. 1. Coexpression of KIT and CD34 in human GISTs. (A to C) Serial sections of a tumor that
developed in the muscle layers of the stomach. (D to F) Higher magnification of (A) to (C). (A) and (D) are
stained with hematoxylin and eosin. The boundary of the tumor is indicated by arrows in (A). (B) and (E)
are stained with anti-KIT and (C) and (F) with anti-CD34 (8). Arrowheads in (A) to (C) indicate that
endothelial cells of blood vessels express CD34 but not KIT. Im; longitudinal muscle layer. (G to I)
Coexpression of KIT and CD34 in another GIST, also from the stomach, demonstrated by confocal laser
scanning microscopy (8). (G) Binding of rabbit anti-KIT to tumor cells demonstrated by FITC-labeled
anti-rabbit IgG (green). (H) Binding of mouse anti-CD34 to tumor cells demonstrated by RPE-labeled
anti-mouse IgG (red). (I) Merged confocal image of (G) and (H) showing coexpression of KIT and CD34 in
tumor cells (yellow). Bars in (A) to (C), 50 wm; in (D) to (I), 100 um.

Fig. 2. Coexpression of KIT and CD34 in ICCs surrounding myenteric ganglion cells in normal human small
intestine. (A and B) Serial sections of the normal human small intestine. (C and D) Higher magnification of (A)
and (B), respectively. (A) and (C) are stained with anti-KIT and (B) and (D) are stained with anti-CD34 (8). The
localization of KIT and CD34 double-positive cells is consistent with that of ICCs, which are present between
the circular muscle layer (cm) and the longitudinal muscle layer (Im), and surrounding the myenteric ganglion
cells (gc) (17). (E to G) Demonstration by confocal laser scanning microscopy (8). (E) Binding of rabbit anti-KIT.
(F) Binding of mouse anti-CD34. (G) Merged confocal image of (E) and (F). Amows in (F) and (G) show
endothelial cells and fibroblast-like cells that express CD34 but not KIT. Bars in (A) to (G), 50 pm.

SCIENCE e« VOL. 279 » 23 JANUARY 1998 * www.sciencemag.org



e

Fig. 3. Mutations of c-kit in GISTs.
GIST 1 showed an in-frame dele-
tion of 6 base pairs (bp). GIST 2
showed an in-frame deletion of 15
bp. GIST 3 showed the same in-
frame deletion as observed in
GIST 2 and an additional point mu-
tation at codon 550 (AAA to ATA)
that resulted in a Lys%%°—lle sub-
stitution. GIST 4 showed a point
mutation at codon 559 (GTT to
GAT) that resulted in a
Val$%9—Asp substitution. GIST 5
showed an in-frame deletion of 27
bp. The c-kit mutations in the jux-
tamembrane domain of the
HMC-1 human mast cell leukemia
cell line (5) and the FMA3 murine
mastocytoma cell line (6) are
shown for comparison. Deleted
amino acids are shown by dashes
(-) and mutated amino acids by
boxes. Murine and human KIT are

KIT
SP EC T™ M  TKI KI TK2
521 543 816
NH, 7
| '
GISTs and Mast cell neoplasms
tumor mast cell lines Asp-816 to Val
549 560 570 581
Wild type (;KPMYEVQWKV\'/EEINGNNYV\}IDPTQLPYDHE
GISTs
1 QKPMYEVQWK - - EEINGNNYVYIDPTQLPYDHK
2 QK----- QWKVVEEINGNNYVYIDPTQLPYDHK
3 QIII ----- QWK VVEEINGNNYVYIDPTQLPYDHK
4 QKPMYEVQWK[DJVEEINGNNYVYIDPTQLPYDHK
5 Q-- - - VVEEINGNNYVYIDPTQLPYDHK
HMC-1 QKPMYEVQWKVEE[NGNNYVY[DPTQLPYDHK
548 560 570 580
FMA3 BKPMYEVQWKVVEE[NGNNYVYIDP """" E

of different lengths (7), so the amino acid numbering in the FMA3 KIT is different. Abbreviations used
are as follows: SP, signal peptide; EC, extracellular domain; TM, transmembrane domain; JM,
juxtamembrane domain; TK1 and TK2, tyrosine kinase domains; and KI, kinase insert. Abbreviations
for the amino acid residues are as follows: D, Asp; E, Glu; G, Gly; H, His; |, lle; K, Lys; L, Leu; M, Met;
N, Asn; P, Pro; Q, GIn; T, Thr; V, Val; W, Trp; and Y, Tyr.
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were also transfected as controls. (A) Tyrosine phosphorylation was examined with or without rhSCF
stimulation (75). (B) Immune complex kinase assay carried out without rhSCF stimulation (76).
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15). The wild-type c-kit cDNA was intro-
duced as a negative control, and the tyrosine
kinase domain mutant and the juxtamem-
brane domain mutant found in the HMC-1
human mast cell leukemia cell line (5) were
introduced as positive controls. Wild-type
KIT was phosphorylated on tyrosine only
when recombinant human (rh) SCF was add-
ed to the culture medium (Fig. 4A). In con-
trast, the gain-of-function KIT mutants
found in HMC-1 cells were phosphorylated
on tyrosine without the addition of thSCEF, as
reported previously (5). The magnitude of
the constitutive tyrosine phosphorylation
was greater in the tyrosine kinase domain
mutant than in the juxtamembrane domain
mutant. The c-kit mutants found in GISTs
also showed the constitutive tyrosine phos-
phorylation in 293T cells without thSCF
(Fig. 4A). The constitutive tyrosine phospho-
rylation of the juxtamembrane mutant of
HMC-1 cells was of similar magnitude to that
of the juxtamembrane mutants of GISTs. In
in vitro kinase assays (16), the c-kit mutants
found in the GISTs exhibited constitutive
kinase activation that was similar in magni-.
tude to that of the juxtamembrane domain
mutant of HMC-1 cells (5) (Fig. 4B).

To investigate the biological consequenc-
es of the mutant c-kit, we introduced the
c-kit mutations found in the GISTs into the
mouse c-kit cDNA (17) and then stably
transfected the cDNA into the interleukin 3
(IL-3)-dependent Ba/F3 murine lymphoid
cell line (18). As a control, mouse wild-type
c-kit cDNA was also transfected into Ba/F3
cells. We estimated Ba/F3 cell proliferation
using an MTT colorimetric assay (19). Ba/F3
cells with the wild-type murine c-kit grew in
the presence of either recombinant mouse
(rm) IL-3 or rmSCF; Ba/F3 cells with the
mutated murine c-kit grew autonomously
without rmIL-3 and rmSCF (Fig. 5, A and
B). Ba/F3 cells with the mutated murine c-kit
also grew autonomously in nude mice (Fig.
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Fig. 5. Autonomous proliferation of Ba/F3 cells transfected with mutated
murine c-kit in culture and in nude mice. (A and B) MT T colorimetric assay (79)
in the presence of rmiL-3 (A) or rmSCF (B). Data are expressed as the mean of
four wells. Untransfected Ba/F3 cells (), Ba/F3 cells with the murine wild-type
c-kit (O), and Ba/F3 cells with the murine mutated c-kit [GIST 1 (A), GIST 2 (@),
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Days after injection

GIST 3(V), GIST 4 (W), and GIST 5 (x). (C) Development of tumors in nude mice
(20 after injection of the Ba/F3 cells with each mutated c-kit. The original Ba/F3
cells and Ba/F3 cells with murine wild-type c-kit did not form tumors. Data are
expressed as the mean of results in five mice. (D) Immune complex kinase
assay (16). Ba/F3 cells with various c-kit cDNAs were cultured without rmSCF.
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5C) (20). The constitutive kinase activation
of all KIT mutants found in the five GISTs
was confirmed in Ba/F3 cells (Fig. 5D) (5,
21).

Although various cells including hemato-
poietic stem cells express both KIT and
CD34 (22), ICC:s are the only cells that are
double-positive for KIT and CD34 in normal
Gl wall of humans. This strongly suggests
that KIT and CD34 double-positive GISTs
might originate from [CCs, although we can-
not exclude the possibility that ICCs and
GISTs simply show common undifferentiat-
ed characteristics such as those observed in
multipotential hematopoietic stem cells.

The mechanism by which KIT becomes
constitutively activated appears to be differ-
ent for the tyrosine kinase domain mutant
and the juxtamembrane domain mutant (6,
21). The former is constitutively activated
without forming dimers (21), whereas the
latter constitutively dimerizes without bind-
ing SCF (6, 21). The tyrosine kinase do-
main mutation of KIT has been found only
in mast cell neoplasms (7) and its jux-
tamembrane domain mutation only in
GISTs. The mechanisms by which these
different mutations’cause malignant trans-
formation of different cell types remain to
be investigated.
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Interaction of a Golgi-Associated Kinesin-Like
Protein with Rab6
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Rab guanosine triphosphatases regulate vesicular transport and membrane traffic within
eukaryotic cells. Here, a kinesin-like protein that interacts with guanosine triphosphate
(GTP)-bound forms of Rab6 was identified. This protein, termed Rabkinesin-6, was lo-
calized to the Golgi apparatus and shown to play a role in the dynamics of this organelle.
The carboxyl-terminal domain of Rabkinesin-6, which contains the Rab6-interacting do-
main, inhibited the effects of Rab6-GTP on intracellular transport. Thus, a molecular motor
is a potential effector of a Rab protein, and coordinated action between members of these
two families of proteins could control membrane dynamics and directional vesicular traffic.

Small guanosine triphosphatases (GTPases)
of the Rab family play an essential role in the
processes that underlie the targeting and fu-
sion of transport vesicles with their appropri-
ate acceptor membrane (1). Within the past
few years, several putative effectors that in-
teract with Rab proteins in their GTP-bound
conformation have been identified (2). They
are not related to each other and appear to

fulfill diverse functions. This finding suggests
that Rab proteins have a more complex role
than simply regulating the interaction be-
tween proteins involved in the recognition
of transport vesicles with membranes (3).
On the other hand, it is now well established
that intracellular organelles and vesicles, in-
cluding the endoplasmic reticulum (ER) and
Golgi membranes, move along cytoskeletal
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