
tivation of PI 3-kinase could then serve to 
eliminate a Vav inhibitor and simultaneous- 
ly produce activators of Vav GEF activity. 
Vav is a member of a large family of mole- 
cules containing a Dbl homology domain 
and a PH domain that could be similarly 
regulated ( 1 ) .  Ras activation of Rac is medi- 
ated by PI 3-kinase (19). RasV1ZC4" a Ras 
effector mutant that retains the ability to 
bind to and activate PI 3-kinase but not 
other Ras effectors (19, 20, 21) ,  cooperated 
with wild-type Vav to induce membrane ruf- 
fling in REF-52 fibroblasts (Fig. 3),  support- 
ing our suggestion that Ras activation of Rac 
is mediatqd by a Dbl-related molecule. Fur- 
thermore, regulation through the Dbl ho- 
mology and PH domains of Sos, a bifi~nc- 
tional GEF for both Ras and Rac, is appar- 
ently similar to the regulation that we have 
proposed for Vav (22). The regulation of 
Vav by both PI 3-kinase and a protein kinase 
is similar to the dual regulation of the PH 
domain containing protein kinase B (PKB/ 
AKT) (23). Perhaps such dual regulation is a 
general feature of signaling molecules with 
PH domains. 
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Coupling of Ras and Rac Guanosine 
Triphosphatases Through the Ras Exchanger Sos 

Anjaruwee S. Nimnual, Bogdan A. Yatsula, Dafna Bar-Sagi* 

The Son of Sevenless (Sos) proteins control receptor-mediated activation of Ras by 
catalyzing the exchange of guanosine diphosphate for guanosine triphosphate on Ras. 
The NH,-terminal region of Sos contains a Dbl homology (DH) domain in tandem with 
a pleckstrin homology (pH) domain. In COS-1 cells, the DH domain of Sos stimulated 
guanine nucleotide exchange on Rac but not Cdc42 in vitro and in vivo. The tandem 
DH-PH domain of Sos (DH-PH-Sos) was defective in Rac activation but regained Rac 
stimulating activity when it was coexpressed with activated Ras. Ras-mediated activa- 
tion of DH-PH-Sos did not require activation of mitogen-activated protein kinase but it 
was dependent on activation of phosphoinositide 3-kinase. These results reveal a po- 
tential mechanism for coupling of Ras and Rac signaling pathways. 

R a s  guanine nucleotide binding proteins 
regulate cell growth through the activation 
of signaling pathways that control gene ex- 
pression and actin polymerization ( 1 .  2). 
The effects of Ras on the actin cvtoskeleton 
are mediated by Rac, another s k l l  guanine 
nucleotide binding protein ( 3 ) ,  and Rac 
proteins function downstream of Ras in the 
pathways leading to cellular proliferation 
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and oncogenic transfor~nation (4-7). How- 
ever, the mechanisms linking Ras activa- 
tion to Rac activation are unknown. 

In mammalian cells, growth factor-in- 
duced activation of Ras is mediated bv the 
guanine nucleotide exchange factor ~ d s  (8, 
9). Sos catalyses the exchange of guanosine 
diphosphate (GDP) for guanosine triphos- 
phate (GTP) on Ras through a central do- 
main of about 400 amino acids that is highly 
conserved among guanine nucleotide ex- 
change factors (GEFs) for Ras. The NH2- 
terminal domain of Sos is about 600 amino 
acids long and contains regions of ho~nology 

VOL. 279 23 JANUARY 1998 www.sciencemag.org 



to Dbl (DH) and pleckstrin (PH) domains. 
Because Dbl family proteins function as 
GEFs for specific members of the Rho family 
of guanosine triphosphatase (GTPases) (10, 
1 I), we tested whether the DH domain of 
Sos (DH-Sos) can function as an activator of 
Rac. 

Stimulation of Rac results in activation 
of the c-Jun NHz-terminal kinase (JNK) 
(12, 13). To test whether DH-Sos can ac- 
tivate JNK, we transfected COS-1 cells 
with expression plasmids encoding T7 
epitope-tagged DH-Sos (14) and a FLAG 
epitope-tagged version of JNK1. JNK activ- 
ity was assayed in an immunocomplex ki- 
nase assay with c-Jun coupled to glutathi- 
one S-transferase (GST-c-Jun) as a sub- 
strate (15). Expression of constitutively ac- 
tivated Rac in which amino acid 12 was 
substituted to Val (RacV12) induced a 25- 
fold activation of JNK (Fig. lA), and ex- 
pression of DH-Sos led to a 15-fold stimu- 
lation of JNK activity. Activation of JNK 
induced by DH-Sos was inhibited (80%) by 
coexpression of dominant negative Rac in 
which residue 17 was changed to Asn 
(RacN17), indicating that the stimulation 
of JNK by DH-Sos depends on the activa- 
tion of Rac. Expression of DH-Sos had no 
effect on the activity of another mitogen- 
activated protein kinase family member, 
ERK (16). 

To determine whether DH-Sos might 
activate Rac by functioning as a GEF, we 
tested the ability of DH-Sos to stimulate 
the dissociation of guanine nucleotide from 
Rac. Human kidney 293 cells were trans- 
fected with an expression plasmid encoding 
T7 epitope-tagged DH-Sos or control vec- 
tor. Lysates prepared from the transfected 
cells were incubated with a GST-Racl fu- 
sion protein bound to [CX-~~P]GTP, and gua- 
nine nucleotide exchange activity was de- 
termined by measuring the amount of 
[(u-~'P]GTP that remained bound to GST- 
Racl (1 7). In the presence of lysates from 
cells expressing DH-Sos, the rate of release 
of guanine nucleotide from Rac was about 
twice as fast as that in the presence of 
lysates from control cells (Fig. lB), making 
it probable that DH-Sos functions as a GEF 
for Rac. Attempts to express and purify 
recombinant DH-Sos were not successful, 
thus preventing analysis of GEF activity 
with purified proteins. 

To investigate the specificity of DH-Sos 
GEF activity, we examined the effects of 
DH-Sos expression on the activity of 
Cdc42. Activation of JNK by DH-Sos was 
not affected by coexpression of the domi- 
nant negative Cdc42, Cdc42N17 (Fig. 1C). 
Moreover, lysates from cells expressing DH- 
Sos displayed no GEF activity toward GST- 
Cdc42 (Fig. ID). Similarly, DH-Sos failed 
to stimulate guanine nucleotide exchange 

A 
Fig. 1. Activation of Rac by DH- 
Sos. (A and C)  Stimulation of JNK 
activity by DH-Sos is dependent on 
Rac but not Cdc42. COS-1 cells 
were transfected with FLAG 
ep~tope-tagged JNKI in combina- 
t~on with expression plasmids en- 
coding T7 epitope tagged RacV12, 

19- DH-Sos, RacN17, or Myc epitope- 
tagged Cdc42N17. JNK activity 
was measured by irnmunocomplex 

Time (min) kinase assay with GST-c-Jun as 
D the substrate and visualized by au- 

Fold: 1 2515 3 2 toradiography (15).  Protein expres- 
sion was determined by prote~n im- 
munoblottlng with polyclonal anti- 
bodies to JNK and monoclonal an- 
tibodies to T7 or Myc (35). (B and 
D) Stimulation of guanine nucleo- 
tide dissociation from Rac but not 
Cdc42 by cell lysates containing 
DH-Sos. Lysates prepared from 
human kidney 293 cells expressing 

Time (rnin) 
DH-Sos (closed circle) or vector- 

only control (closed square) were incubated with [cu-32P]GTP-bound 
At the indicated times, portions of the 

Blot: T7 + Myc Ab incubation mixture were removed and the amount of [ct3V]GTP remain- 
ing bound to each protein was determined (1 7). Results are expressed 

, c-Jun as percentages of the values obtained at 0 min. Results of two inde- 
pendent experiments are shown. 

Fold: 1 3619 1819 

- 0 - - -  

Blot: JNK Ab 

on RhoA (18). Together, these data suggest 
that DH-Sos has a preferential activity to- 
ward Rac. 

Rac proteins regulate the organization of 
the actin cytoskeleton, and activation of 
Rac induces polymerization of cortical actin 
and formation of membrane ruffles in fibro- 
blasts (3, 19). We microinjected COS-1 
cells with expression plasmids encoding T7 
epitope-tagged wild-type Rac ( R a c W )  and 
DH-Sos (20). When microinjected alone, 
neither DH-Sos nor RacWT induced mem- 
brane ruffling (Fig. 2). However, membrane 
ruffling was observed when cells were in- 
jected with both R a c W  and DH-Sos. DH- 
Sos differs from the DH domain of Tiaml, 
an activator of Rac, which requires an NHz- 
terminal PH domain for induction of Rac- 
dependent membrane ruffling (21 ). 

Most Dbl family members contain a DH 
domain in tandem with a PH domain (10, 
1 1 ). In some cases, these PH domains have 

been shown to regulate the targeting of DH 
domains to the appropriate subcellular lo- 
cation (21, 22). The PH domain of Sos 
(PH-Sos) is located immediately to the 
COOH-terminal side of DH-Sos, binds 
phosphoinositides, and functions in mem- 
brane localization and activation of Sos 
(23, 24). To investigate the functional re- 
lationship between DH-Sos and PH-Sos, we 
analyzed the activity of a hemagglutinin 
(HA) epitope-tagged Sos construct con- 
taining the DH and PH domains (DH-PH- 
Sos) (14). When expressed in COS-1 cells, 
DH-PH-Sos failed to stimulate JNK activa- 
tion (Fig. 3A). DH-PH-Sos did not induce 
membrane ruffling when microinjected ei- 
ther alone or with RacWT into quiescent 
COS-1 cells (16). Thus, the presence of the 
PH domain of Sos appears to inhibit the 
activity of the DH domain. The solution 
structure of the PH domain of Sos suggests 
that the PH and DH domains make specific 

Fig. 2. Membrane ruffllng Induced 
by DH-Sos. Serum-depnved COS-1 
cells were m~cro~njected wlth ex- 
presslon plasm~ds encodlng T7 
ep~tope-tagged RacWT or DH-Sos 
or both, as lndlcated Three hours 
after lnjectlon cells were fixed and 
stained w~th rhodamme-phallo~din to 
v~sual~ze membrane ruffles (20). 
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Fig. 3. Dependence on Ras for activation of JNK by DH-PH-Sos. (A) Failure of DH-PH-Sos to activate 
JNK. COS-1 cells were transfected with expression plasmids encoding FLAG epitope-tagged JNKl and 
either T7 epitope-tagged RacV12 or DH-Sos or HA epitope-tagged DH-PH-Sos or PH-Sos. JNK activity 
was measured as described (Eg. 1A). (B) Requirement of RasV12 for DH-PH-Sos-induced JNK activa- 
tion. COS-1 cells were transfected with FLAG epitope-tagged JNKl in combination with expression 
plasmids encoding T7 epitope-tagged RacV12 or DH-Sos or HA epitope-tagged DH-PH-Sos or RasV12. 
(C) Effects of Ras effector binding loop mutants on JNK activation by DH-PH-Sos. COS-1 cells were 
cotransfected with FLAG epitope-tagged JNKl and HA epitope-tagged DH-PH-Sos in combination with 
expression plasmids encoding HA epitope-tagged RasV12. RasV12C40, or RasV12S35. JNK activity was 
measured as described (Fig. 1A). Results are expressed as fold JNK activation relative to the activation 
measured in cells transfected with vector alone. Results of two independent experiments are shown. 

structural contacts (25, 26), indicating that 
the activity of DH-Sos may be regulated by 
intramolecular interactions with PH-Sos. 

Because Ras activation is linked to Rac 
activation (3, 27, 28), we examined the 
role of Ras in DH-Sos-mediated activa- 
tion of Rac. Coexpression of activated 
Ras, RasV12, with DH-Sos had no effect 
on the extent of JNK activation (29). 
However, DH-PH-Sos, which by itself 
failed to induce JNK activation (Fig. 3A), 
did activate JNK when it was coexpressed 
with RasVl2 (Fig. 3B). Thus, Ras-depen- 
dent signals appear to enhance the activ- 
ity of DH-Sos through a mechanism in- 
volving PH-Sos. We also tested the effects 
of Ras effector mutants that interact dif- 
ferentially with downstream effectors be- 
cause of specific amino acid substitutions 
in the effector binding loop (30). The Ras 
mutant in which amino acid 35 was changed 
to Ser (RasV12S35) is able to bind to Raf-1 
but not to RalGDS or the pllOa subunit of 
phosphoinositide 3-kinase (PI 3-kinase), 
whereas the Ras mutant in which amino acid 
40 was changed to Cys (RasV12C40) binds 
to pl lOa but not to Raf-1 and RalGDS (28, 
31 ). When expressed with DH-PH-Sos, only 
the RasV12C40 mutant enhanced activa- 
tion of JNK (Fig. 3C). Thus, PI 3-kinase 
might be the effector by which Ras induces 
activation of DH-PH-Sos. The PH domain 
of Sos binds to the lipid product of PI 3- 
kinase phosphatidylinositol-3,4,5-trisphos- 
phate [PtdIns(3,4,5)P3] (32). Thus, activa- 
tion of PI 3-kinase and the subsequent bind- 
ing of PtdIns(3,4,5)P3 to the PH domain 
could provide a mechanism for the activa- 

tion of DH-Sos. Consistent with this sugges- 
tion are the findings that the activity of the 
DH domain of Vav is directly controlled by 
substrates and ~roducts of PI 3-kinase (33). . , 

A similar mode of regulation has been dem- 
onstrated for the PH domain of protein ki- 
nase B (34). 

Our results suggest that Sos activates Ras 
through the Ras GEF domain and Rac 
through the DH domain. Ras-mediated PI 
3-kinase signaling may provide a coupling 
mechanism by which Ras activation can 
control Rac activation. In support of such a 
mechanism is the observation that a Ras- 
induced actin rearrangement, which is me- 
diated by Rac, requires functional PI 3-ki- 
nase acting upstream of Rac (28). Thus, the 
multidomain structure of Sos may allow the 
coordinated activation of signaling path- 
ways involved in growth control and cy- 
toskeletal organization. 
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Plasma Insulin-Li ke Growth Factor-l and 
Prostate Cancer Risk: A Prospective Study 
June M. Chan," Meir J. Stampfer, Edward Giovannucci, 

Peter H. Gann, Jing Ma, Peter Wilkinson, 
Charles H. Hennekens, Michael Pollak 

Insulin-like growth factor-l (IGF-I) is a mitogen for prostate epithelial cells. To investigate 
associations between plasma IGF levels and prostate cancer risk, a nested case-control 
study within the Physicians' Health Study was conducted on prospectively collected 
plasma from 152 cases and 152 controls. A strong positive association was observed 
between IGF-I levels and prostate cancer risk. Men in the highest quartile of IGF-I levels 
had a relative risk of 4.3 (95 percent confidence interval 1.8 to 10.6) compared with men 
in the lowest quartile. This association was independent of baseline prostate-specific 
antigen levels. Identification of plasma IGF-I as a predictor of prostate cancer risk may 
have implications for risk reduction and treatment. 

T h e  cell proliferation rate is positively cor- 
related wit11 the risk of transformation of 
certain epithelial cells (1) .  Insulin-like 
growth factors have rnitogenlc and anti- 
apoptotic effects o n  normal and trans- 
formed prostate epithelial cells (2-4). Most 
circulating IGF-I originates in  the  liver, but 
IGF bioactivity in tissues is related not  only 
to circulating IGF and IGF binding protein 
(IGFBP) levels, hut also to local production 
of IGFs, IGFBPs, and IGFBP proteases (5 ) .  
Person-to-person variability in levels of 
plasma IGF-I and IGFBP-3 [the major cir- 
culating IGFBP (5)]  is considerable (6 ,  7 ) ,  
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and plasma IGF-I levels appear to reflect 
heterogeneity in tissue IGF-I bioactivity 
(8-1 1 ). 

T o  examine the potential relation be- 
tween plasma IGF-I, IGF-11, and IGFBP-3 
levels and prostate cancer risk, we conduct- 
ed a prospective case-control study of Inen 
participating in the Physicians' Health 
Study (1 2) .  A t  the start of the  study (1982),  
the  rnen (aged 40 to 82)  provided medical 
information via mailed-in questionnaires, 
and 14,916 (68%) also provided plasma 
(12).  Through 1992 follow-up was over 
99% complete. Reports of prostate cancer 
were verified by medical records (13) .  

Cases and controls were selected from 
the  14,916 physicians nrho provided plasma. 
By March 1992, we confirmed 520 cases, of 
whorn 152 had adequate volume for IGF 
assays in 1997. Levels of plasma steroid 
horrnones (14) ,  prostate-specific antigen 
(PSA)  ( l 5 ) ,  and carotenoids, and C A G  
polymorphis~ns of the  androgen receptor 
gene (1 6 )  had previously been measured in 
the same samples (1 7) .  On average, 7 years 
(minimum = 6 months, maximum = 9.5 
years) elapsed between plasma collection 
and diagnosis. 

W e  selected controls at random from 
Inen who provided blood and had not  re- 

monoclonal antibody to HA ( I  2CA5) (Babco), mono- 
clonal antibody to Myc (9E1 O), or polyclonal antbody 
to JNKl (Santa Cruz Biotechnology) for 1 hour and 
then with horseradsh peroxdase-conjugated goat 
antibody to mouse ~mmunoglobul~n G [IgG) or goat 
antibody to rabbit IgG (Cappel). The mmunoreactve 
bands were visualzed with the enhanced chemilu- 
mnescence detection systeln (Dupont-NEN). 
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ported a diagnosis of prostate cancer up to 
the  diagnosis date of the  case. W e  excluded 
Inen with inadequate sample volume and 
who had total or partial prostatecto~nies by 
the  time of the  case diagnosis. W e  matched 
one control to each case o n  the  basis of 
srnoking (never, past, or current),  duration 
of follow-up, and age within 1 year. 

IGF-I, IGF-11, and IGFBP-3 were as- 
sayed by enzyme-linked immunoahsorhent 
assay (ELISA) with reagents from Diagnos- 
tic Systems Laboratory (Webster, Texas) 
(18, 19).  A single IGF-I lneasurernent is 
generally representative of levels over time 
(20, 21) .  W e  used paired t tests to cornpare 
the  means of IGF-I, IGF-11, and IGFBP-3 
levels between cases and controls. W e  ex- 
amined age-standardized (using five groups: 
40 to 50, 5 1  to 55, 56 to 60, 61 to 65, and 
66 to  80)  mean values of various predictors 
for prostate cancer within quartiles of IGF-I 
among the  controls. Conditional logistic 
regression was used to analyze the  associa- 
tions between IGF and prostate cancer, af- 
ter adjust~nent for other possible risk fac- 
tors-PSA, height, weight, body mass in- 
dex, C A G  polymorphisms of the  androgen 
receptor gene, and plasma levels of lyco- 
pene, estrogen, testosterone ( T ) ,  dihy- 
drotestosterone ( D H T ) ,  sex hormone bind- 
ing globulin (SHBG),  prolactin, and 3 a -  
androstanediol glucuronide ( A A G )  (1 4-1 6, 
22-24). In  view of the  growth-inhibitory 
properties of IGFBP-3 and its potential to 
reduce the  hioactivity of IGF (25),  we hy- 
pothesized that high levels of IGFBP-3 
would be inversely related to risk. Because 
levels of IGF-I and IGFBP-3 were highly 
correlated, it was necessary to  simultaneous- 
ly adjust for these factors in regression mod- 
els to observe their independent effects. 

W e  estimated relative risks (RRs) from 
the  odds ratios and computed 95% confi- 
dence intervals (CIS) (24).  In  stratified 
analyses, we used unconditional logistic re- 
gression models and adjusted for age (eight 
5-year categories) and smoking (never, past, 
and current) in the models to  make full use 
of the  data without restriction to the 
matched pairs (24).  W e  also separately ex- 
amined high grade/stage cases, low grade/ 
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