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through the housng vents was obscured irom the par- 
tcpant s eyes lllum~nat~on at the paltcpant's eye level 
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The possibility that membrane fusion events in the postsynaptic cell may be required for 
the change in synaptic strength resulting from long-term potentiation (LTP) was exam- 
ined. lntroducing substances into the postsynaptic cell that block membrane fusion at 
a number of different steps reduced LTP. lntroducing SNAP, a protein that promotes 
membrane fusion, into cells enhanced synaptic transmission, and this enhancement was 
significantly less when generated in synapses that expressed LTP. Thus, postsynaptic 
fusion events, which could be involved either in retrograde signaling or in regulating 
postsynaptic receptor function or both, contribute to LTP. 

Br ie f  repetitive stimulation of excitatory 
synapses in many regions of the central ner- 
vous system results in a long-lasting increase 

u 

in synaptic strength referred to  as long-term 
potentiation (LTP). Although LTP at most 
synapses is known to require the activation 
of the N-methyl-D-aspartate (NML3A) sub- 
class of glutamate receptor and a subsequent 
rise in postsynaptic calciulu concentration, 
the steps involved in generating the persia- 
tent increase in synaptic strength are poorly 
understood (1 ) .  Thus, it is still unresolved 
whether the  increase in synaptic strength 
results primarily from a persistent increase in 
the  release of glutarnate ( the  transmitter at 
excitatory synapses) or from a persistent in- 
crease III the sensltiv~ty of the postsynaptic 
cell t o  elutamate. 

Regardless of which rnechanlsm proves 
to  be correct, an  attractive hv~o thes i s  is , L 

that  membrane f ~ ~ s i o n  events in the  
postsynaptic cell play a n  important role in  
LTP. A presynaptic LTP expression mech- 
anistn requires the  release of retrograde 
messengers frorn the  postsynaptic cell, a 
process that could involve either mem- 
brane-permeant messengers or the  exocyto- 
sis of messenger frotn the  postsynaptic cell 
(2 ) .  A proposed postsynaptic expression 
rnechanistn involves the  all-or-none up-reg- 
ulation of glutamate receptors, possibly by 
the  insertion of membrane containing glu- 
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tatnate receptors (3). Thus, tnembrane fu- 
sion events in  the  postsynaptic cell could be 
required for generation of both the  pre- and 
postsynaptic modifications that have been 
proposed to  occur during LTP. T o  test this 
~ossibili tv we examined the  effects o n  LTP 
of several agents that disrupt tnembrane 
fusion by interrupting different steps in the  
protein-protein interaction cascade in- 
volved in membrane fusion. In  addition, we 
exatnined the  effects of introducing a re- 
combinant protein into the  postsynaptic 
cell that promotes fusion. 

Standard hippocampal slice and elec- 
trophysiological recording techniques 
were used for all experiments (4). Al l  
c o t n p o ~ n d s  were introduced directly into 
the  postsynaptic cell through sharp, intra- 
cellular recording microelectrodes, which 
were used to  prevent the  washout of LTP 
tha t  occurs with whole-cell recording (5 ) .  
In  all experiments we compared the  re- 
manses recorded intracellularlv with those 
rkcorded simultaneously frotn a n  extracel- 
lular recording electrode placed nearby in 
the  stratum radiatum. This  permitted us to  
monitor t h e  stability of the  preparation 
and,  importantly, the  generation of LTP 
in  the  cells surrounding the  manipulated 
cell simultaneously. 

First, we tested t h e  effects of N-ethyl- 
rnalei~nide (NEM) ,  which blocks NEM- 
sensitive factor (NSF) ,  a cytosolic adeno- 
sine triphosphate-binding protein that ,  
by interacting with S N A P S  (soluble NSF- 
a t tachment  proteins), is required for a 
large number of tnembrane fusion reac- 
tions (6 ) .  NEM ( 5  tnM) was dissolved in 
t h e  electrode solution ( 2  M potassium ac- 
e ta te)  and  loaded into t h e  postsynaptic 
cell by diffusion frotn the  intracellular 
electrode. T o  allow sufficient t ime for 
NEM to  diffuse into the  cell, we waited 30 
to  50 min before attempting to  elicit LTP 
with tetanic stimulation (Fig. 1). Al- 
though tetanic stitnulation produced a 
large LTP in  the  field potential recording, 

www.sclencemag.org SCIENCE VOL. 279 16 JANUARY 1998 399 



avcraglng 145 I 37'0 (11 = 9)  (Fie. 1,  A 
anil D ) ,  ~t l~r i ) i luce~l  a po te~ l t i a t~o i l  of onlT- 
34 I 19% ( i ~  = 9 )  ill cells lo,idcii n-it11 
XEh1 (Fly. 1 ,  .4 ai-iii C:) (P < i? .C?L?l ,  
unpaired t tczt). T h e  lack of LTP ivas nc>t 
s~rnply due to the proloi-izei~ recordlilg 

with a sharp electrode, Pecause other ~011- 
trol experiments ix-1th the same i lurat~on of 
recording ( F I ~ .  1C) sho~veil ilormal LTP. 
IinyortCintlv, XELI haii i n ~ i - i ~ ~ n a l  effect on  
base111-ic synaptic t ransm~ssi~)~-i .  

. 4 l t h a u ~ h  XELI, ivhich reacts ~ i t h  tree 

sr~ltl~ydryl proups in cystelne residues, is a 
poweri~11 tool in the  study of ~llelllbralle 
fusion mach~nery ,  it might ii~srupt LTP hy 
~111 action uilrelateii to the  blockade of 
XSF, for instal-ice, L'y il-iactivat~ng N M D X  
receptors (NLIDARa). Thus, we tested the 
effect of NELI 011 NbLDAR-meillateii ay11- 
aptic currents hy adding 5 111L'f NEM t<> 
the whole-cell pipette solution anil mea- 
~ u r i n g  the  amplituile of escltatory postsyn- 
aptic currents (EPSCs) o1.e~ t i~i le  in the 
preaence c-if the a-amlrio-3-hydro+- 
metllyl-4-isoxa:oleprollate (.qhlPX) 
receyti-ir ,111tagonist XRQX. Whole-cell 
recording n-as used because voltage con- 
trol of the NML)AR-~neiii~lteil response is 
superior ~ v i t h  this approach. T h e  use of the  
bame co~-icel-itr,ition of NEhzl as was usei] 

A 
lntracellular (NEM) 

C 
Intracellular (NEM) 

~ i - ~ t l l  the ii-itracellular recorclil-ig esperi- 
nients ivor~ld be exl>ecteii to result in a 
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lllr~cll greater intracellular concenrrat~on.  
Cnilcr these record~ng c o n J ~ t ~ o n s ,  n o  re- 
ductlo11 111 S M D A R  EPSCs was o h s e r ~ ~ e ~ l  
when measured 50 to  60 111111 after starting 

whole-cell recorcllng (117 2 4n/1, 71 = 4 ) .  
The  b ~ n i i ~ n g  ot SSF to S N A P  1s req~ilred 

tor lilaily meml?rane tu.;lon events. Reca~~se  
NEM may- have effects other than inttirfer- 
ing n.1t11 NSF, ~r was illlportant to deter- 
iiilne n.hether a L!~fterent ~ n h i h ~ t o r  of NSF- 
S S A P  i i l teract~oi~ hloclceii LTP. For the 
s i lu~J  g ~ a n t  syilap~e ~t hiis hccn sho\vi1 that 
pre\yilapt~c injection of a short peptide that 
112s the 5a1ile sequence as the slte 011 S N A P  
to ~ v h ~ c h  S S F  b ~ n ~ i s  blocks the  release of 
transmitter, ~rcsumahly by competing 1 ~ 1 t h  
KYF for h i d i n g  to S N A P  ( 7 ) .  W e  prepared 
a s ~ n i ~ l a r  peptide (referred to as N19)  anLi 
c x a m ~ n e ~ l  ~ t s  effect on  the ah111ty of the 
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Fig. 1. Fostsytiaptc oa3ng of NEM reduces LTP 111 the CAI recjon cf the hppccatno~s IA a ~ i d  BI 
Res~11:s ft-om a s~ ig le  expet-men: thar cotFoare ntracell,~Iar recordngs of excta:cr\, nos:synaotc 
oo:entas (EFSFs) '1-om ~~crceect t -odes contanng 5 mM VEM :A) ,u/tCI s~tiiultaneo~ls reccrcings of fled 
ootentas :'EPSPs) :B;. Insets siio:+! aver-ages cf f~ve consec~.tce traces I-ecorcied before itrace 1) and 50 
m n  ater Irt-ace 21 tetanzaton larrc,ws) (C and D) Cotnparscn of LTP 11 cells loaded :%!tIi kEM ICI (13 = 

91 s;i~:h s~tiiulraneous recordings cf fEPSPs :C:. 

Fig. 2. Pcs:sy~iapt~c caa~t ig  cf a peo:de 
t~ ia t  m m c s  :lie Nh,-tet-mtia ciomali of 
SkHP reduces LTP Granlis cf LTP t i  cells 
recorded v,ltCI nicroeectrcdes conrating 
(A: N19 (1 tiiM) (!; = 1 2  cr :C) S19 I!; = 8i 
IB and DI Granhs cf LTP 111 extt-acell~lla~. 
feci nctenra recorcings from expermen:s 
n :HI and (C1. respec:~!eIy. H~-rc,~vs ndcate 
rile rtne cr tetanc s t~~ i i ~ . l a r~cn  nsers s~io?;,! 
1-epresenta:ve traces 1-ecct-cled 30 ni t i  be- 
fore :Iefii and atiet- :r~gh:l the tetanc s t m ~ l -  
atot i .  Scale bab.s. 10 rmV and 50 I r s  kt- (HI 
anci [C); 0 4 1iiV and 10 I r s  fcf :BI alid (C1 
[E: Graph (1; = 41 cf nor l razed kMCH 
cut-renr ati ipl i t~des reccrded v,fitCI K19 :1 
1nM1 n the v,!hole-cell pa:cli o1ne::e scL.- 
t,cn Inset s:iov5!s representatl\;e NMDAR 
EPSCs recorded at 5 and 50 m n  after re- 
corcing :+!as oegun Scale bars 40 pA anci 
50 tiis F )  C,lm~lIatice Cl~stcgrat~s tliat 
ccmpare tlie n-agti~tucie of LTP obrained 
oclring inrracell~lar reccro~iigs ;.:~th e~ther 
N I 9  1th1cl.c n e :  ct- 51 9 :t i in Iirie'l pect oes. 

A 
Intracellular (N 19) 

e 
lntrace'lular (S19) 

E 
Whole cell (N19) 

L 
I ,  I 

-60 20 20 60 

Tirne (min) 

L 1  

0 20 40 60 

Time (min) 
-60 -20 20 60 

Time (min) 

B 
Exiracelular 

P' 0.6 
R 

e 
0 2 

0 100 200 300 

EPSP slope (%) 
-60 -20 20 60 

Time (min) 

1 

-60 -20 20 60 

Time (min) 



postsynaptic cell to generate LTP (8). 
Agaln, to ensure adequate diffusion of the 
peptide into the postsynaptic cell, the tet- 
anus was give11 only after 1 hour of ~ n t r a -  
cell~rlar recording. As was the case for 
NEM, S 19 had no effect on baseline trans- 
mission, but the magnitude of LTP recorded 
intracellularly (30 2 18?4>) was much less 
than that recorded ex t race l l~~la r l~  (100 i- 
16%) (Fig. 2, A and B) (n  = 12). 

Two additional experiments were con- 
ducted to rule out nonspecific effects of N 19. 
First, we made another pertide using a ran- 
dom sequence of the saine 19 ainino acids 
(9).  This scrambled peptide (referred to as 
S19) applied at an identical concentration 
with the same protocol had no effect on LTP 
(138 i- 40?h and 106 -f 19?4> for intracellular 
and extracellular recordings, respectively, 
n = 8) (Fig. 2, C and D). It is inlportant to 
note that during the course of these experi- 
inents the investigator did not know wheth- 
er the electrode contained the N19 or S19 
peptide. For a more detailed comparison of 
the results with N19 and S19, we plotted the 
results from each cell as a cumulative prob- 
ability distribution (Fig. 2F). The graph of 
the N19 experilnents is shifted to the left 
( P  < 0.005, unpaired t test), and a nuiuber of 
cells loaded with N19 showed no LTP, 
whereas all cells loaded with S19 generated 
LTP. The second control experiment exam- 
ined whether N19 had any effect on 
NMDAR-mediated synaptic responses be- 
cause blockade of NMDARs lvould also 
block LTP. Use of the same concentration of 
N19 in the \vhole-cell pipette had no signif- 
icant effect on the alnplit~lde of the 

Fig. 3. Postsynaptic loading of the light 
char  from botulinum toxin (BoTx) reduces 
LTP. Graphs of LTP in cells recorded w~th 
m~croelectrodes contalnlng (A) 0.5 pM 
BoTx (n = 5) (serotype B) or (C) heat-nac- 
tivated BoTx (n = 5). (B and D) Graphs of 
LTP In extracellular fleld potentla record- 
lngs from exper~ments In (A) and (C), re- 
spectively. Arrows indlcate the tme of te- 
tanc stimuaton, Insets show representa- 
tive traces recorded 30 min before (left) 
and after (rlght) the tetanlc st~mulat~on. 
Scale bars: 10 mV and 30 ms for (A) and 
(C) ; 0.3 mV and 10 ms for (B) and (D). (E) 
Normallzed NMDA current amplitudes 
(ampl.) recorded wlth 0.5 pM BoTx In 
the whole-cell patch pipette solution (n = 

4). Inset shows representative NMDAR 
EPSCs recorded 5 and 50 min after re- 
cordings were begun. Scale bars: 40 pA 
and 50 ms. (F) Cumuatlve probablllty plot 
that compares the magnitude of LTP ob- 
tained durng intraceluar recordings with 

NMDAR EPSC (94 i- 5% ~neasured be- 
tween 50 to 60 min, n = 5) (Fig. 2E). 
Furthermore, the envelope of depolarizatlon 
during the tetanus was unaltered by 1 1 9 .  
Thus. the effects of 1 1 9  on LTP were not 
due to some disruption in the initla1 trigger- 
lne events that are reouired for LTP. " 

Perhaps the most selective way to disrupt 
me~nbrane fusion lnachinery is with the 
clostridial neurotoxins, which, depending 
011 the specific serotype, proteolyt i~al l~ 
cleave three proteins, synaptobre\~in (or 
VAMP), SNAP-25, and syntaxin (6 ,  10). 
These three proteins form a complex that 
serves as a receptor for a-SNAP and NSF. 
\Ye chose to use botulinum toxin (serotype 
B), which acts on  the vesicular inembrane 
proteins of the synaptobrevin fanlily (1 0). 
The tetanic stimulatioi~ was give11 only af- 
ter 2 hours of intracell~~lar recording [vith 
electrodes containing 0.5 p M  botulinuln 
toxin. The light chain of botulinum toxin " 
had no effect on baseline transmission (Fig. 
3A)  but greatly reduced the magnitude of 
LTP (11 -f 15% and 110 2 11% for intra- 
cellular and extracell~~lar recordings, respec- 
tively, n = 5 )  ( P  < 0.0001, unpaired t test). 
This effect presumably resulted from its en- 
zymatic activity, because the heat-inacti- 
vated enzyme (1 1 ) had no effect on LTP 
(72 2 25?h and 82 2 43041 for intracell~llar 
and extracell~~lar recordings, respectively, 
n = 5 )  (Fig. 3, C and D).  A cumulative 
frequency plot of each of the experiments in 
the t\vo groups indicates that the number of 
cells showing LTP \vas considerably reduced 
by the active toxin (Fig. 3F) ( P  < 0.015, 
unpaired t test). The  effect of bo t~~l inum 

toxin on LTP was not due to a blockade of 
NMDAR f~lnction, beca~rse application of 
0.5 p M  Lbot~rlinum toxin through whole- 
cell recording plpettes had no effect on the 
S M D A R  EPSC (Fig. 3E) (102 2 2?h mea- 
s~rred at 50 to 60 min, n = 4),  nor was it due 
to a iuodification of the 100-Hz stiinulus- 
induced depolarization, because the depo- 
larizing envelope was the same. 

It has been proposed that SNAP may be 

A 
lntracellular (BoTx) 

C 
lntracellular (Inact. BoTx) 

a lilniting component in the transmitter 
release nrocess, because addition of SNAP 
to the squid giant synapse results in the 
enhanced release of transmitter (7). If LTP 
involves a siinilar mechanism, postsynaptic 
loading of C A I  cells with SNAP might 
result in an enhancement in synaptic 
strength. We loaded C A I  pyramidal cells 
with recoinbinant SNAP through \vhole- 
cell recording pipettes. After the whole-cell 
recording \vas established, the EPSC gradu- 
ally increased in size and reached a maxi~nal 
potentiation of 66 -f 21% (n  = 12) w11e11 
measured at 50 to 60 ~ n i n  (Fig. 4A, upper 
graph). In contrast, the simultaneously re- 
corded extracellular synaptic responses re- 
mained stable during the experiment (Fig. 
4A, lower graph). In interleaved control 
experiments that used the same pipette so- 
lution but [vithout SNAP, there was no 
change in the synaptic responses (Fig. 4A).  
Throu~hout  these exnerirnents the investi- " 
gator did not kno\v the nature of the solu- 
tion contained in the pipette. 

A critical question is whether the en- 
hancernent of synaptic strength by postsyn- 
aptic loading of SNAP is due to mecha- 
nisins that also occur during LTP. W e  com- 

E 
Whole cell (BoTx) 

L L 
I I I I , 1 1 1  1 1 1 1 1 1 1  
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spectlvely, P = 0 0133, unpared t test) 
Experiments were done at 30°C to Increase the enzymatc actvty of BoTx 
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p<ared tlie etfects of S K A P  o n  a pat1ivl.a~ in 
14-hich LTP had Ixen  saturated ii-it11 the  
effects on a c o n t r ~ l  yatli~vaj- to the  same 
cell. If the SNAP-induced e n h a ~ l c e m e ~ l t  
shares features n-it11 LTP, then the  maeni- 
tude ot t h ~ s  enhancement a t  the  potentiat- 
ed s l -napes  shoulLl I:e smaller than that at 
the  colitrol <vnapses o n  the same cell. J ' e  
tlrst saturated LTP in one path\r.av hy-ap- 
plving repetitive tetalll that had no eitect 
o n  the coiltrol pathtvay ( F L ~  4B).  A nhole-  
cell recorillng \!-as then made with a pipette 

solutlon th<at contalliecl SNAP.  Tlie result> 
showeii a slgi~iiic~int lncreae  in  a!-n<aptic 
strciigtll in the control pathlvai-. hut a min- 
imal effect in the  p(~tentlatec1 pathway ( F I ~ .  
4C) .  A summary of these e x p e r ~ m e ~ ~ t s  (11 = 

S) is s11oa.n 111 Flg. 4D. O n  a\-erape, S N A P  
elicited a n  enha~icement  of 58 i 1 loo in 
the  nair-e pathway hut on17- 22 I l?";, in 
the  ~lotentiated llathn~ay (P < 2.~25, 1111- 

paireLl t test). Thus, prior s<aturation I)t LTP 
sienlticantlv r ed~~ce i l  the  enliancernent o t  
synaptic stre~lgtll t l ~ a t  1,s eliclted 1.y loailing 
CA1 pyramidal cells \vlth SNAP.  

Our  results sho\v that  three mechanis- 
tically ~ n i l e ~ ~ e n d e i l t  ~ n h ~ l ~ ~ r o r s  of mem- 
l ~ r a n e  fuqlon hloclted or srrc>nql~ retiucfci 

LTP \4-hen loailed into C A I  pyr<amiilal 
cells. Furthermore, a n  i n ~ r e ~ a s e  in  syn:apt~c 
strenqth n-as elicited \vlien ~ue i l lh ra~ le  tu- 
sioli n.as facilitateJ 1ly loading CAI cells 
with S N A P ,  anii th l i  e~ lh~ancemenr  ap- 
peared to  share mechanism; n-ith LTP. 
I m p o r t a ~ ~ t l y ,  the  inliibltora had n o  ettect 
011 ham1 synay t~c  tr;ansmission, I.estlng 
inelllhralie potential, ~ n p i i t  resist<ance, or  
the  NhlLJAR-mediated compo~len t  of syn- 
aptlc responses. Thus,  it is very u ~ i l i k e l ~  
that  the  etfects o t  the  ~ n h ~ l ~ i t o r s  o n  LTP 
\\-ere i l ~ ~ e  to  borne nollspecitic deteriora- 
t ion ot the  cell, anL1 the  lack of chanxe 111 

membrane potentla1 nlakes ~t unlikel\- that  
some ci ) i~s t i tu t~r-e  exec\-totlc p<athn;ay ib 
reclulrec? tor LTP. Instead, \ve favor the  
conc lus~on  that  the  moleci~l~ar machinery 
invol\-ed 111 reyulated exocvtoils, stieh ;as 
tha t  responsll~le for the  release of trans- 
lliltter from presynaptic terminals, may 

be present In ,lendrltes ot neurons anel 
there play a11 Important role 111 LTP xnii 
perhaps other  forms of s\-naptic plastlcltv. 

X number of lines of ev~dence  <upport 
the  sugrestion that \.esicle esoc] t c ~ l s  m,iy 
occur in pyramiL1al cell dendr~tes.  Elec- 
tron microscol3ic studies have l i lent~f~ed 
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slllooth vesicles 112) a11c1 co:ated vesicles 
( 1.3) 111 cielidritic spines. T h e  synaptic ves- 
icle protein synaptol~revln also appears to 
be present in the iieliririte o t  l l~ppocampal 
neurons ( 14 ), as iiiles NSF ( l i ) ,  ~vllich may 
interact with the  COOH-terminal tail of 
GluR! (15.  16). In  addition, imaging stud- 
ies with the  iluorescent ilye FM1-43 suggest 
that calclum-ile1~e1iiie1it~ tet,lnus toxin-sen- 
siti1.e exocytosis can occur 111 the  cleniirites 
of hippocarnpal neurons in culture (17) .  
T h e  preseilce of calc~uin-clepenclmt esocy- 
tosls in both lliuscle cells ( 1  8) and nonnetl- 
ronal cells ( 1  9) incllcates that  tills process 
occurs in maiiy d~fterent cell types. 
HOM might ~ ~ c ~ ~ t s \ - n a p t i c - r e y ~ ~ l ~ ~ t e i l  exocy- 

t o s i  contrll~ute to LTPl O n e  1 7 ~ s s ~ b ~ l ~ t y  is 
that ~t is req~ilreci for deliver\ of retrogracie 
messengers (20).  Alternat~vel\-, rneml:ra~le 
fusion incay he requirecl fiir clellvery or inser- 
tion o t  glutamate receptor. ~ n t o  the yostsyn- 
aptlc membrane, a mechanism that ilo~llii 
explain the  conr,ersion of silent to tunctlonal 
b\7na17ses ciurmg LTP ( 3 ,  2 1 ). T h e  fincllng of 
coated p ~ r s  at the postsy~~aptic ilens~ty that 
are Immulloreacrlre tor AMPA recelltors 
(22) 1s consistent n i t h  such a p r ~ ~ ~ o s a l .  Reg- 
ulated lnell~brane inserrloll of protems ,ip- 
rears to he a common process in cell biology. 
Tn-o \veil-establ~ble examples ~ n c l u ~ l e  the 
insulin-stimulated u11sert1on of ~ lucose  trans- 
porters into aclil3ocyte ancl myocyte m e n -  
branes ( 2 3 )  anil the \~asopressin-srimlulateil 
delivery of water channels to kiclnev or hiad- 
der lilelllhrane (24),  hot11 of which in\~olve 
vesicle fl~sion machinerv. I11 fact, such a 
mechanism might account for the recently 
re~7orted rec r~~ i tmen t  of v - a m i n o ~ t r i c  acid 
tl-pe X receptors to synapses hy ins~ilin (25).  
l f ~ t r ~ i c t ~ ~ r a l  remoilelin? ot the synapse occurs 
during LTP, meml.rane tus~on  coulil a150 
play an  ~ ~ l l p c ~ r t a i ~ t  role in the Lleliverv of the 
,iprri)priare synaptic constituents or compo- 
nents. LVhatever Its exact role, membrane 
ius~on  machiner\-, In ailclltion tcl helnc. 1111- 
~'ortant h r  the pres\-naptic release nt neuro- 
transmitter, appears to play an  ilnportant 
role in the posts\;napt~c cell ti7 generate LTP. 
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A Potassium Channel Mutation in 
Neonatal Human Epilepsy 

Christian Biervert," Bjorn C. Schroeder,* Christian Kubisch, 
Samuel F. Berkovic, Peter Propping, Thomas J. Jentsch,? 

Ortrud K. Steinlein? 

Benign familial neonatal convulsions (BFNC) is an autosomal dominant epilepsy of 
infancy, with loci mapped to human chromosomes 20q13.3 and 8q24. By positional 
cloning, a potassium channel gene (KCNQ2) located on 20q13.3 was isolated and found 
to be expressed in brain. Expression of KCNQ2 in frog (Xenopus laevis) oocytes led to 
potassium-selective currents that activated slowly with depolarization. In a large ped- 
igree with BFNC, a five-base pair insertion would delete more than 300 amino acids from 
the KCNQ2 carboxyl terminus. Expression of the mutant channel did not yield measur- 
able currents.-Thus, impairment of potassium-dependent repolarization is likely to cause 
this age-specific epileptic syndrome. 

Although inost forms of idiopathic epilepsy 
have a genetlc component, only a few spe- 
clflc syndromes are single-gene disorders ( I  ). 
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BFNC 1s an autosomal d o ~ n i ~ l a ~ l t  idiopathic 
epilepsy characterized by unprovoked partial 
or generalized clonlc convulsions, sometimes 
with apneic spells, which occur durlng wake- 
fulness and sleep. Seizures typically start 
around day 3 of life and most often disappear 
after several weeks or months (2) .  Hou,ever, 
about 10 to 15% of patients have febrile or 
afebrile seizures later 111 childhood. Gene loci 
for BFNC have been mapped to chromo- 
some 201113.3 (3) and to chro~l~oso~ne 81124 
14). Most famllles In ahlch the disorder ~, 

occurs are linked to chromosome 20. 
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