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is whether ALH84001 contains endogenous 
organic compounds, and if so, whether 
these compounds are biological or abiotic in 
origin. The bulk meteorite is reported to 
contain 100 to 200 parts per million (ppm) 
of combustible carbon (2), supposedly de
rived from organic compounds. So far, how
ever, the only specific compounds that have 
been reported are parts per million amounts 
of polycyclic aromatic hydrocarbons 
(PAHs) detected in the carbonate globule 
component of the meteorite (I). Another 
martian meteorite collected in the Antarc-

A Search for Endogenous Amino Acids in 
Martian Meteorite ALH84001 

Jeffrey L Bada,* Daniel P. Glavin, Gene D. McDonald, 
Luann Becker 

Trace amounts of glycine, serine, and alanine were detected in the carbonate component 
of the martian meteorite ALH84001 by high-performance liquid chromatography. The 
detected amino acids were not uniformly distributed in the carbonate component and 
ranged in concentration from 0.1 to 7 parts per million. Although the detected alanine 
consists primarily of the L enantiomer, low concentrations (<0.1 parts per million) of 
endogenous D-alanine may be present in the ALH84001 carbonates. The amino acids 
present in this sample of ALH84001 appear to be terrestrial in origin and similar to those 
in Allan Hills ice, although the possibility cannot be ruled out that minute amounts of some 
amino acids such as D-alanine are preserved in the meteorite. 
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t ~ c ,  EETA79001, also contains colnbustible 
carbon ( 3 ) ,  but analyses of the amino acids 
in this meteorite indicated that thls organic u 

carbon 1s terrestrial contamination derlved 
from Antarctic Ice meltwater (4). Because 
EETA79CCl contains a similar suite of 
PAHs as ALH84CC1 (5), it is possible that 
the PAHs 111 ALH84C01 are terrestrial con- 
taminants as well. 

In any 1n1-estigation of organic corn- 
pounds poss~b l~  derlved from life on Mars, it 
is important to focus 011 compounds that 
play an essential role in biochemlstry as we 
know it and that have properties such as 
chirality (handedness) which can be used to ! .  
distinguish between biotic versus abiotic or- 
 gins (6) .  Amino acids are one of the few 
compound classes that fulfill these require- 
ments. Amino acids are the building blocks 
of proteins and enzymes that are integral 
components of terrestrial biology. In addi- 
tion, only L amino acids (the L enantl- 
omers) are incorporated into proteins dur- 
ing biosynthesis. The structural principles 
on which biornacromolec~~lar act~r-itr 1s 
based suggest that any functional biochem- 
istry must use a single enantiomer of any 
molecule that has a chiral carbon. Because 
there are no apparent b~ochem~cal reasons 
a ~ h v  L alnlno aclds should be selected o17er D 
amino acids, it 1s generally ass~uned that life 
elsewhere could be based on elther L or D 
amino acids, but not both (6) .  In contrast 
to the L amino acids associated with terres- 
trial biology, all known laboratory abiotic 
synthetic processes result in racemic mix- 
tures of amino acids, and the amino acids in 
carbonaceous chondrites are nearly racemic 
when terrestrial contamination is absent 
(7). I n  contrast to amino acids, PAHs have 
no known role in biochemistry on Earth, 
although they can be produced from the 
combustion or long-term diagenesis of bio- 
logically derived organic compounds such 
as sterols and triterpenes (8). PAHs also 
appear to be widespread throughout the 
universe (9). The molecular architecture of 
PAHs, with the possible exception of their 
stable isotope composition, cannot be used 
to determine whether they are terrestrial or 
extraterrestrial in origin. " 

We investigated the abundances of ami- 
no acids, as well as their enantiomeric com- 
position, in ALH84001 using high-perfor- 
rnance liquid chromatographv (HPLC) 
with fluorescent detection-ilb) carried out 
at the limits of sensitivity of 'the method 
(detection limit -I@-'' mol). Three sepa- 
rate chunks of an ALH84001 sample (1 1 ) 
were crushed into a coarse powder that was 
split into two separate portions of 485 and 
463 mg. These crushed samples were then 
carried through a procedure designed to 
investigate amino acids in the free and 
bound state in the carbonate components of 

the meteorite, as well as the total amino (spl~t 139, parent 2)  were carr~ed through 
aclds present in the noncarbonate fraction the same processing procedure. To demon- 
( 1  2). As controls, 500 mg of crushed ser- strate that the processing procedure we used 
pentine (a hydrated magnesium silicate) did recover amino acids from meteorites, we 
that had been heated at 500°C for 3 hours also investigated a 100-mg crushed portion 
and 133 mg of a crushed sample of the of the Murchison carbonaceous chondrlte 
Antarctic lunar meteorite M.4C88105 using the same procedure. 

MAC 88105 
3 

Murchison 

ALH 84001 

Serpentine Blank 

Retention time (min) - 
Fig. 1. The 7- to 27-min regon (no peaks were observed outsde ths  tme  period) of the HPLC 
chromatograms. OPNNAC dervatization of amino acds in the 1 M HC-soluble, unhydrolyzed fracton 
(extract A. left), the HCI-soluble. HCI-hydrolyzed fraction (extract B, mddle), and the 1 M HCI-insoluble. 
HC-hydrolyzed (extract C, right) from the Antarctic lunar meteorite MAC88105. the Murchison mete- 
orte, the martian meteorte ALH84001, and the serpentine blank. Peaks were dent fed by comparison 
of the retenton tmes with those of an amino acld standard run at the same t m e  (representative 
chromatograms of standards are available on request). The peak identificatons are as follows: 1 ,  D- 
aspartic acid; 2. L-aspartc acid: 3. DL-serlne; 4. DL-gutamc acld; 5, gycne; 6. D-aanine: 7, L-aanlne; 
8.  AIB: and 9, DL-~soval~ne. 
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The HPLC chromatogram obtained for 
MAC88105 (Fig. 1) shows that the peak 
areas are close to those in the seroentine 
blank, but trace amounts of glycine (-0.1 
ppm), DL-serine (-0.2 pprn), and L-ala- 
nine (-0.1 ppm) were detected in the 1 M 
HCl-soluble, unhydrolyzed fraction (ex- 
tract A. which accounts for -20% of the 
total weight of the sample). No detectable 
amino acids ( < I 0  to 20 ppb) above blank 
levels were found in the other MAC88105 
extracts. The amino acids in the 1 M 
HC1-soluble, unhydrolyzed fraction of 
MAC88105 are terrestrial contaminants 
because only L-alanine was detected and 
because lunar soils have been found to 
contain <10 ppb of glycine along with 
lesser amounts of aspartic and glutamic 
acids, serine, and alanine (13). The 
Murchison sample yielded amino acids in 
each of the three extracts (Fig. 1) .  The 
predominant amino acids were found to be 
aspartic and glutamic acids, glycine, ala- 
nine, a-an~inoisobut~ric acid (AIB), and 
isovaline, which is consistent with the 
major amino acids previously detected in 
Murchison (14). The combined amount of 
the maior detected a~nino acids in all 
three fract~ons mas -10 ppm, wh~ch  IS 

about half of what we found when we 
processed our Murchison sample using the 
standard 10Cl°C water extraction method 
(7 ,  14). This suggests that some of the 
Murchison amino acids were destroyed by 
the acid extraction ~rocedure. The D/L 
ratios for alanine and isovaline in our 
Murchison extracts were found to be close 

to the racemic value of 1.0 (after correc- 
tion with a racemic standard), which is 
consistent with the D/L ratios for these 
amino acids reported in uncontaminated 
samples of M~~rchison (7) .  However, the 
D/L aspartic acid ratio is significantly less 
than 1, which indicates that terrestrial 
contamination has affected some of the 
amino acids in this Murchison sample. 

Analyses of ALH84001 (Fig. 1 and Ta- 
ble 1)  reveal that there are essentially no 
amino acids detectable above blank levels 
in the 1 M HCl-soluble, unhydrolyzed 
fraction (extract A) ,  which indicates that 
there are no free amino acids present in 
this sample. However, there are parts per 
million amounts of amino acids in the 1 M 
HC1-soluble, hydrolyzed fraction (extract 
B), although the two separate samples 
gave different values, suggesting that the 
amino acids in this component are not 
homogeneously distributed. This variabil- 
ity in amino acid distribution is consistent 
with the heterogeneous chemical and iso- 
topic compositions previously reported in 
the ALH84001 carbonates (1 5). The HC1- 
soluble, hydrolyzed component should 
represent bound amino acids present in 
the carbonates in the meteorite, although 
some other mineral phases such as apatite 
could have also dissolved during the 1 M 
HCl treatment. Trace (parts per billion) 
levels of amino acids were also detected in 
the 1 M HC1-insoluble, hydrolyzed com- 
ponent (extract C),  but these amino acids 
may still have been derived from carbon- 
ates that did not totally dissolve during 

Table 1. Summary of the average blank-corrected amino acld concentrations in the varous extracts of 
two samples (s ted as no. 1 and no. 2) of ALH84001, In the carbonate and bulk matrx of EETA79001 
(41, and In Alan Hills ice (4). The results obtained for serpentine carred through the same procedures 
were used to make blank corrections for ALH84001. Peaks corresponding to the retenton tmes of 
aspartlc and glutamlc aclds were also observed In some of the ALH84001 extracts, but these were too 
small in comparison with the blanks for accurate quantitatlon. A analyses used derivatizaton times of 
1 min except where indicated (70). Extract A: 1 M HCI-soluble, unhydrolyzed. Extract B: 1 M HCI- 
soluble, H C  hydrolyzed. Extract C: 1 M HC-insoluble, HCI hydrolyzed. The uncertainties of the mea- 
surements are about 10.02 pprn for ALH84001 extracts A and B: i l  ppb for ALH84001 extract C: 15 
ppb for the EETA79001 carbonate fraction and bulk matrlx: and z0.001 ppb for the Alan HIls ice. 

Sample (sze) DL-Serne Glycine D-Alanine L-Aanne AI B 

ALH84001 
Extract A 

No 1 (2 4 mg) 1 0 . 2  ppm <O 1 ppm 1 0 . 2  ppm <0 2 ppm <0.2 ppm" 
No. 2 (3 6 mg) 1 0 . 2  ppm <O 1 ppm 1 0 . 2  ppm 0.2 ppm <0.5 ppm 

Extract B 
No. 1 (7 0 mg) 7.1 ppm 4.8 ppm <0 1 ppm 2.1 ppm <0.1 ppm" 
No. 2 (8 9 mg) 0.2 ppm 0.7 ppm 0.06 ppm 0.14 ppm <0.2 ppm 

Extract C 
No. 1 (484 mg) 14 P P ~  50 ppb <I ppb 10 P P ~  <I ppb' 
No. 2 (461 mg) 49 P P ~  35 P P ~  4 PPb 12 P P ~  <4 P P ~  

EETA 7900 7 
Carbonate fractloni 198 ppb 170 ppb 10 ppb 21 4 ppb <I ppb . 
Bulk matrx$ 173 ppb 54 ppb 23 ppb 94 PPb <I P P ~  

Allan Hills ice 
ResldueD 0.26 ppb 0.26 ppb 0 012 ppb 0 096 ppb <0.002 ppb 

~Dervatzaton for 15 m n  THC-soluble, HC-hydrolyzed extract. $Lithology A, H C  hydrolyzed. 8Residue 
remanng after meltwater evaporat~on H C  hydrolyzed. 

the 1 M HC1, room-temperature digestion. 
The detected amino acids consist primar- 
ily of glycine, serine, and alanine, with 
traces of aspartic and glutamic acids. Some 
other minor peaks that are not present in 
the serpentine blank are present in the 
chromatograms of ALH84001. One of 
these peaks, which is also present in 
MAC88105 extract B, has a retention 
time (-25 min) similar to methylamine 
(Fig. 1). However, when the extracts were 
spiked with a methylamine standard, sep- 
arate peaks were observed, which indicates 
that this peak is not methylamine. No 
AIB above blank levels was found in any 
extract from ALH84001 (Table 1) .  For 
aspartic acid, only the L enantiolner was 
detected, although any trace amounts of 
D-aspartic acid that might be present 
would have been below the detection lim- 
it. For alanine, trace amounts of D-alanine 
appear to be present in the 1 M HCl- 
soluble and -insoluble hydrolyzed ex- 
tracts, especially in the sample with the 
lower overall amino acid content (for ex- 
ample, sample 2). The calculated D/L ala- 
nine ratios are in the range -0.05 to 
-0.4. However, because the small peaks 
with a retention time characteristic of D- 
alanine could be chromatography artifacts, 
these D/L alanine values must be consid- 
ered uncertain and are upper limits (1 6 ) .  
The D-alanine content of the bulk mete- 
orite (amount in extracts B and C divided 
by the amount of meteorite analyzed) is 
estimated to be <0.01 ppm. 

The suite of amino acids (for example, 
glycine, serine, and L-alanine) detected in 
ALH84001 is, in general, similar to those 
detected in another Antarctic martian me- 
teorite, EETAi9001, and is also similar to 
the amino acid distribution in Allan Hills 
ice (Table 1).  Although the absolute con- 
centrations are different in ALH84001, 
EETA79001, and Allan Hills ice, the rela- 
tive amino acid compositions are about the 
same. The hydrolyzed carbonate fraction 
(extract B) of ALH84001 sample 2 and the 
hydrolyzed carbonate component of 
EETAi9001 have similar amino acid con- 
tents, whereas amino acids in the hydro- 
lyzed carbonate fraction of ALH84001 Sam- 
ple 1 are more abundant. In the case of 
EETAi9001, the amino acids were suggest- 
ed to be derived from ice meltwater that 
percolated through the meteorite sometime 
during its residence in Antarctic ice (4).  
Alteration of the trace elemental composi- 
tions of several Antarctic eucrite meteorites 
(including several from the Allan Hills re- 
gion) has also been attributed to a similar 
ice meltwater weathering process (1 7). Ex- 
posure to meltwater could take place either 
at the ice surface (18) or near the ice- 
bedrock interface where meltwater in some 
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cases is extensive enough to for~n large sub- 
surface lakes (19). The input from melting 
ice of nutrients, organic compounds, and 
viable organisms into meltwater pools or 
puddles may give rise to a range of diverse 
biological activities ( 1  Y), which could play 
a role in the conta~nination of meteorites 
with terrestrial organic coinvonents. - 

The exact ~neclianism of terrestrial 
alnino acid incorporation and retention by 
the meteorites is not known. We have 
found that in experiments where a sample 
of an amino acid standard ITas reneatedlv 
passed through a small column containing 
CaCO, (1-pm grains), -50% by weight of 
the alnino acids originally present in solu- 
tion were adsorbed by the carbonate after 
only 10 passes (this is equivalent to a 
waterlmineral ratio of 14). Once adsorbed 
to the carbonate, the amino acids could 
only be liberated by dissolution and hy- 
drolysis in 6 M HCl, a procedure similar to 
the one we used to obtain extract B from 
ALH84001. In similar experi~llents with 
magnetite, pyrite, carbonate grains, quarts, 
plagioclase, apatite serpentine, a nlixture 
of clay minerals, and humic acid, amino 
acids were scavenged to a lesser extent. 
Thus, the periodic exposure of the mete- 
orites to ice meltwater could result in the 
irreversible uptake of amino acids mainly 
by the carbonate mineral components. 
This conta~nination model is consistent 
with the distribution of amino acids we 
have found in the carbonate versus non- 
carbonate components of EETA79001 and 
ALH84001 (Table 1).  Because the car- 
bonate fractions of ALH84001 saluples 1 
and 2 contain different amounts of amino 
acid contamination, some carbonate com- 
ponents have apparently been more affect- 
ed than others. This varying amount of 
contamination may be related to carbon- 
ate globule size and the extent of micro- 
fracturing (20). 

To what extent this ice melt~~ater  
contalnination process wo~~ld  affect other 
trace organic components such as PAHs is 
unknown. However, radiocarbon measure- 
ments (21 ) of EETA79001 and ALH84001 
indicate that the bulk organic carbon, of 
which amino acids and PAHs contribute 
only a few percent or less, is terrestrial in 
origin. These radiocarbon studies coupled 
with the amino acid results presented here 
indicate that major and milnor organic con- 
stituents in these martian meteorites are 
contaminants. 
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