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A Search for Endogenous Amino Acids in
Martian Meteorite ALH84001

Jeffrey L. Bada,* Daniel P. Glavin, Gene D. McDonald,
Luann Becker

Trace amounts of glycine, serine, and alanine were detected in the carbonate component
of the martian meteorite ALH84001 by high-performance liquid chromatography. The
detected amino acids were not uniformly distributed in the carbonate component and
ranged in concentration from 0.1 to 7 parts per million. Although the detected alanine
consists primarily of the L enantiomer, low concentrations (<0.1 parts per million) of
endogenous D-alanine may be present in the ALH84001 carbonates. The amino acids
present in this sample of ALH84001 appear to be terrestrial in origin and similar to those
in Allan Hills ice, although the possibility cannot be ruled out that minute amounts of some
amino acids such as D-alanine are preserved in the meteorite.

The report by McKay et al. (1) that the
martian meteorite ALH84001 contains ev-
idence of biological processes on Mars re-
mains controversial. Of central importance
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is whether ALH84001 contains endogenous
organic compounds, and if so, whether
these compounds are biological or abiotic in
origin. The bulk meteorite is reported to
contain 100 to 200 parts per million (ppm)
of combustible carbon (2), supposedly de-
rived from organic compounds. So far, how-
ever, the only specific compounds that have
been reported are parts per million amounts
of polycyclic aromatic  hydrocarbons
(PAHSs) detected in the carbonate globule
component of the meteorite (1). Another
martian meteorite collected in the Antarc-
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tic, EETA79001, also contains combustible
carbon (3), but analyses of the amino acids
in this meteorite indicated that this organic
carbon is terrestrial contamination derived
from Antarctic ice meltwater (4). Because
EETAT79001 contains a similar suite of
PAHs as ALH84001 (5), it is possible that
the PAHs in ALH84001 are terrestrial con-
taminants as well.

In any investigation of organic com-
pounds possibly derived from life on Mars, it
is important to focus on compounds that
play an essential role in biochemistry as we
know it and that have properties such as
chirality (handedness) which can be used to
distinguish between biotic versus abiotic or-
igins (6). Amino acids are one of the few
compound classes that fulfill these require-
ments. Amino acids are the building blocks
of proteins and enzymes that are integral
components of terrestrial biology. In addi-
tion, only L amino acids (the L enanti-
omers) are incorporated into proteins dur-
ing biosynthesis. The structural principles
on which biomacromolecular activity is
based suggest that any functional biochem-
istry must use a single enantiomer of any
molecule that has a chiral carbon. Because
there are no apparent biochemical reasons
why L amino acids should be selected over D
amino acids, it is generally assumed that life
elsewhere could be based on either L or D
amino acids, but not both (6). In contrast
to the L amino acids associated with terres-
trial biology, all known laboratory abiotic
synthetic processes result in racemic mix-
tures of amino acids, and the amino acids in
carbonaceous chondrites are nearly racemic
when terrestrial contamination is absent
(7). In contrast to amino acids, PAHs have
no known role in biochemistry on Earth,
although they can be produced from the
combustion or long-term diagenesis of bio-
logically derived organic compounds such
as sterols and triterpenes (8). PAHs also
appear to be widespread throughout the
universe (9). The molecular architecture of
PAHs, with the possible exception of their
stable isotope composition, cannot be used
to determine whether they are terrestrial or
extraterrestrial in origin.

We investigated the abundances of ami-
no acids, as well as their enantiomeric com-
position, in ALH84001 using high-perfor-
mance liquid chromatography (HPLC)
with fluorescent detection (10) carried out
at the limits of sensitivity of the method
(detection limit ~107'% mol). Three sepa-
rate chunks of an ALH84001 sample (11)
were crushed into a coarse powder that was
split into two separate portions of 485 and
463 mg. These crushed samples were then
carried through a procedure designed to
investigate amino acids in the free and
bound state in the carbonate components of
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the meteorite, as well as the total amino
acids present in the noncarbonate fraction
(12). As controls, 500 mg of crushed ser-
pentine (a hydrated magnesium silicate)

that had been heated at 500°C for 3 hours
and 133 mg of a crushed sample of the

Rt e e st REPORTS

(split 139, parent 2) were carried through
the same processing procedure. To demon-
strate that the processing procedure we used
did recover amino acids from meteorites, we
also investigated a 100-mg crushed portion
of the Murchison carbonaceous chondrite

Antarctic lunar meteorite  MAC88105 using the same procedure.
MAC 88105
3
5
3 ? 7 3
7 4
2 2 ly 2 47
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Fig. 1. The 7- to 27-min region (no peaks were
chromatograms. OPA/NAC derivatization of amino

observed outside this time period) of the HPLC
acids in the 1 M HCl-soluble, unhydrolyzed fraction

(extract A, left), the HCI-soluble, HCI-hydrolyzed fraction (extract B, middle), and the 1 M HCl-insoluble,
HCI-hydrolyzed (extract C, right) from the Antarctic lunar meteorite MAC88105, the Murchison mete-

orite, the martian meteorite ALH84001, and the ser

pentine blank. Peaks were identified by comparison

of the retention times with those of an amino acid standard run at the same time (representative
chromatograms of standards are available on request). The peak identifications are as follows: 1, D-

aspartic acid; 2, L-aspartic acid; 3, DL-serine; 4, DL-

8, AIB; and 9, DL-isovaline.

glutamic acid; 5, glycine; 6, D-alanine; 7, L-alanine;
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The HPLC chromatogram obtained for
MACS88105 (Fig. 1) shows that the peak
areas are close to those in the serpentine
blank, but trace amounts of glycine (~0.1
ppm), DL-serine (~0.2 ppm), and L-ala-
nine (~0.1 ppm) were detected in the 1 M
HCl-soluble, unhydrolyzed fraction (ex-
tract A, which accounts for ~20% of the
total weight of the sample). No detectable
amino acids (<10 to 20 ppb) above blank
levels were found in the other MAC88105
extracts. The amino acids in the 1 M
HCl-soluble, unhydrolyzed fraction of
MACS88105 are terrestrial contaminants
because only L-alanine was detected and
because lunar soils have been found to
contain <10 ppb of glycine along with
lesser amounts of aspartic and glutamic
acids, serine, and alanine (I3). The
Murchison sample yielded amino acids in
each of the three extracts (Fig. 1). The
predominant amino acids were found to be
aspartic and glutamic acids, glycine, ala-
nine, a-aminoisobutyric acid (AIB), and
isovaline, which is consistent with the
major amino acids previously detected in
Murchison (14). The combined amount of
the major detected amino acids in all
three fractions was ~10 ppm, which is
about half of what we found when we
processed our Murchison sample using the
standard 100°C water extraction method
(7, 14). This suggests that some of the
Murchison amino acids were destroyed by
the acid extraction procedure. The D/L
ratios for alanine and isovaline in our
Murchison extracts were found to be close

to the racemic value of 1.0 (after correc-
tion with a racemic standard), which is
consistent with the D/L ratios for these
amino acids reported in uncontaminated
samples of Murchison (7). However, the
D/L aspartic acid ratio is significantly less
than 1, which indicates that terrestrial
contamination has affected some of the
amino acids in this Murchison sample.
Analyses of ALH84001 (Fig. 1 and Ta-
ble 1) reveal that there are essentially no
amino acids detectable above blank levels
in the 1 M HCl-soluble, unhydrolyzed
fraction (extract A), which indicates that
there are no free amino acids present in
this sample. However, there are parts per
million amounts of amino acids in the | M
HCl-soluble, hydrolyzed fraction (extract
B), although the two separate samples
gave different values, suggesting that the
amino acids in this component are not
homogeneously distributed. This variabil-
ity in amino acid distribution is consistent
with the heterogeneous chemical and iso-
topic compositions previously reported in
the ALH84001 carbonates (15). The HCI-
soluble, hydrolyzed component should
represent bound amino acids present in
the carbonates in the meteorite, although
some other mineral phases such as apatite
could have also dissolved during the 1 M
HCI treatment. Trace (parts per billion)
levels of amino acids were also detected in
the 1 M HCl-insoluble, hydrolyzed com-
ponent (extract C), but these amino acids
may still have been derived from carbon-
ates that did not totally dissolve during

Table 1. Summary of the average blank-corrected amino acid concentrations in the various extracts of
two samples (listed as no. 1 and no. 2) of ALH84001, in the carbonate and bulk matrix of EETA79001
(4), and in Allan Hills ice (4). The results obtained for serpentine carried through the same procedures
were used to make blank corrections for ALH84001. Peaks corresponding to the retention times of
aspartic and glutamic acids were also observed in some of the ALH84001 extracts, but these were too
small in comparison with the blanks for accurate quantitation. All analyses used derivatization times of
1 min except where indicated (70). Extract A: 1 M HCl-soluble, unhydrolyzed. Extract B: 1 M HCI-
soluble, HCI hydrolyzed. Extract C: 1 M HCl-insoluble, HCI hydrolyzed. The uncertainties of the mea-
surements are about =0.02 ppm for ALH84001 extracts A and B; 1 ppb for ALH84001 extract C; =5
ppb for the EETA79001 carbonate fraction and bulk matrix; and +0.001 ppb for the Allan Hills ice.

Sample (size) DL-Serine Glycine D-Alanine L-Alanine AB
ALH84001
Extract A
No. 1 (2.4 mg) <0.2 ppm <0.1 ppm <0.2 ppm <0.2 ppm <0.2 ppm*
No. 2 (3.6 mg) <0.2 ppm <0.1 ppm <0.2 ppm 0.2 ppm <0.5 ppm
Extract B
No. 1 (7.0 mg) 7.1 ppm 4.8ppm  <0.1 ppm 2.1 ppm <0.1 ppm*
No. 2 (8.9 mg) 0.2 ppm 0.7 ppm 0.06 ppm 0.14 ppm  <0.2 ppm
Extract C
No. 1 (484 mg) 14 ppb 50 ppb <1 ppb 10 ppb <1 ppb*
No. 2 (461 mg) 49 ppb 35 ppb 4 ppb 12 ppb <4 ppb
EETA79001
Carbonate fractiont 198 ppb 170 ppb 10 ppb 214 ppb <1 ppb
Bulk matrix 173 ppb 54 ppb 23 ppb 94 ppb <1 ppb
Allan Hills ice
Residue§ 0.26 ppb 0.26 ppb 0.012 ppb 0.096 ppb  <0.002 ppb
*Derivatization for 15 min. ‘tHCI-soluble, HCI-hydrolyzed extract. fLithology A, HCI hydrolyzed. §Residue

remaining after meltwater evaporation: HCI hydrolyzed.
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the 1 M HCI, room-temperature digestion.
The detected amino acids consist primar-
ily of glycine, serine, and alanine, with
traces of aspartic and glutamic acids. Some
other minor peaks that are not present in
the serpentine blank are present in the
chromatograms of ALH84001. One of
these peaks, which is also present in
MACS88105 extract B, has a retention
time (~25 min) similar to methylamine
(Fig. 1). However, when the extracts were
spiked with a methylamine standard, sep-
arate peaks were observed, which indicates
that this peak is not methylamine. No
AIB above blank levels was found in any
extract from ALH84001 (Table 1). For
aspartic acid, only the L enantiomer was
detected, although any trace amounts of
D-aspartic acid that might be present
would have been below the detection lim-
it. For alanine, trace amounts of D-alanine
appear to be present in the 1 M HCI-
soluble and —insoluble hydrolyzed ex-
tracts, especially in the sample with the
lower overall amino acid content (for ex-
ample, sample 2). The calculated D/L ala-
nine ratios are in the range ~0.05 to
~0.4. However, because the small peaks
with a retention time characteristic of D-
alanine could be chromatography artifacts,
these D/L alanine values must be consid-
ered uncertain and are upper limits (16).
The D-alanine content of the bulk mete-
orite (amount in extracts B and C divided
by the amount of meteorite analyzed) is
estimated to be <0.01 ppm.

The suite of amino acids (for example,
glycine, serine, and L-alanine) detected in
ALHB84001 is, in general, similar to those
detected in another Antarctic martian me-
teorite, EETA79001, and is also similar to
the amino acid distribution in Allan Hills
ice (Table 1). Although the absolute con-
centrations are different in ALH84001,
EETA79001, and Allan Hills ice, the rela-
tive amino acid compositions are about the
same. The hydrolyzed carbonate fraction
(extract B) of ALH84001 sample 2 and the
hydrolyzed  carbonate component of
EETA79001 have similar amino acid con-
tents, whereas amino acids in the hydro-
lyzed carbonate fraction of ALH84001 sam-
ple 1 are more abundant. In the case of
EETAT79001, the amino acids were suggest-
ed to be derived from ice meltwater that
percolated through the meteorite sometime
during its residence in Antarctic ice (4).
Alteration of the trace elemental composi-
tions of several Antarctic eucrite meteorites
(including several from the Allan Hills re-
gion) has also been attributed to a similar
ice meltwater weathering process (17). Ex-
posure to meltwater could take place either
at the ice surface (18) or near the ice-
bedrock interface where meltwater in some
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cases is extensive enough to form large sub-
surface lakes (19). The input from melting
ice of nutrients, organic compounds, and
. viable organisms into meltwater pools or
puddles may give rise to a range of diverse
biological activities (19), which could play
a role in the contamination of meteorites
with terrestrial organic components.

The exact mechanism of terrestrial
amino acid incorporation and retention by
the meteorites is not known. We have
found that in experiments where a sample
of an amino acid standard was repeatedly
passed through a small column containing
CaCOj; (1-pm grains), ~50% by weight of
the amino acids originally present in solu-
tion were adsorbed by the carbonate after
only 10 passes (this is equivalent to a
water/mineral ratio of 14). Once adsorbed
to the carbonate, the amino acids could
only be liberated by dissolution and hy-
drolysis in 6 M HCI, a procedure similar to
the one we used to obtain extract B from
ALHB84001. In similar experiments with
magnetite, pyrite, carbonate grains, quartz,
plagioclase, apatite serpentine, a mixture
of clay minerals, and humic acid, amino
acids were scavenged to a lesser extent.
Thus, the periodic exposure of the mete-
orites to ice meltwater could result in the
irreversible uptake of amino acids mainly
by the carbonate mineral components.
This contamination model is consistent
with the distribution of amino acids we
have found in the carbonate versus non-
carbonate components of EETA79001 and
ALH84001 (Table 1). Because the car-
bonate fractions of ALH84001 samples 1
and 2 contain different amounts of amino
acid contamination, some carbonate com-
ponents have apparently been more affect-
ed than others. This varying amount of
contamination may be related to carbon-
ate globule size and the extent of micro-
fracturing (20).

To what extent this ice meltwater
contamination process would affect other
trace organic components such as PAHs is
unknown. However, radiocarbon measure-
ments (21) of EETA79001 and ALH84001
indicate that the bulk organic carbon, of
which amino acids and PAHs contribute
only a few percent or less, is terrestrial in
origin. These radiocarbon studies coupled
with the amino acid results presented here
indicate that major and minor organic con-
stituents in these martian meteorites are
contaminants.
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