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Frameshift Mutants of 3 Amyloid
Precursor Protein and Ubiquitin-B
in Alzheimer’s and Down Patients

Fred W. van Leeuwen,” Dominique P. V. de Kleijn,
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The cerebral cortex of Alzheimer’s and Down syndrome patients is characterized by the
presence of protein deposits in neurofibrillary tangles, neuritic plagues, and neuropil
threads. These structures were shown to contain forms of 3 amyloid precursor protein
and ubiquitin-B that are aberrant (+1 proteins) in the carboxyl terminus. The +1 proteins
were not found in young control patients, whereas the presence of ubiquitin-B*" in
elderly control patients may indicate early stages of neurodegeneration. The two species
of +1 proteins displayed cellular colocalization, suggesting a common origin, operating
at the transcriptional level or by posttranscriptional editing of RNA. This type of transcript
mutation is likely an important factor in the widely occurring nonfamilial early- and

late-onset forms of Alzheimer’s disease.

In Alzheimer's disease (AD) and Down
syndrome (DS) patients, intracellular and
extracellular deposits of proteins in tangles,
neuropil threads, and neuritic plaques are
correlated with neuronal dysfunction lead-
ing to dementia (I). In particular, the fa-
milial types of AD have been investigated
thoroughly and are due to mutations in
genes located on chromosomes 1, 14, and
21, and the apolipoprotein E genotype
(chromosome 19) is a risk factor (2). How-
ever, at least 60% of AD patients do not
have a family history of the disease (3). For
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these frequently occurring, sporadic cases, a
more general mechanism must exist, ulti-
mately leading to neuronal degeneration.
Messenger RNA editing is a means of
producing phenotypic variability (4). More-
over, we have identified another type of
mutation in vasopressin transcripts (5). Ho-
mozygous Brattleboro rats have a single base
deletion in the vasopressin gene, and new-
born rats do not have a functional vasopres-
sin mRNA and protein. Surprisingly, func-
tional RNA and protein are found in a
small but increasing proportion of hypotha-
lamic cells as the animals age (6). This
apparent reversion is due to a dinucleotide
deletion (AGA) within GAGAG motifs
of the mutant RNA (5). Thus, genetic
information in neurons is not stable but
subject to modification through an as yet
unknown mechanism. We surmised that
the opposite process may take place in
other neuronal genes, resulting in mutant
transcripts from wild-type genes, and so we
looked for dinucleotide deletions in two
genes associated with the pathogenesis of
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AD. The genes encoding 3 amyloid pre-
cursor protein (BAPP) and ubiquitin-B
(Ubi-B) protein (I, 7) each contain sev-
eral GAGAG motifs.

In BAPP mRNA, seven GAGAG motifs
are present in regions corresponding to ex-
ons 4, 6,9, 10, and 14. Because three motifs
are clustered in exons 9 and 10, this part of
the transcript, encoding a putative growth-
promoting domain (8), was selected for the
detection of a +1 frameshift mutation re-
sulting in truncated BAPP (BAPP™!) with
a novel COOH-terminus (Fig. 1A). In two
of the three repeats of Ubi-B mRNA, a
single GAGAG motif is present (Fig. 1A).
The predicted +1 frameshift results in an
aberrant COOH-terminus of Ubi-B of the
first or second repeat (Ubi-B™!). As a re-
sult, the glycine moiety essential for mul-
tiubiquitylation (9) would be lacking. To
examine the occurrence of the predicted
+1 proteins, we generated antibodies to the
novel COOH-termini of BAPP*! and Ubi-
B and used them to evaluate the presence
of the abnormal proteins in tissue sections
of cerebral cortex from AD, DS, and con-
trol patients by immunocytochemistry (10)
and immunoblot analysis (11) and to assess
reading frame mutations by selecting cDNA
clones expressing +1 immunoreactivity.

Immunoreactivity for BAPP*! and Ubi-
B*! was prominent in early- and late-onset
AD cases and even more prominent in DS
patients compared with controls matched
for age, sex, postmortem delay, and duration
of fixation (12) (Fig. 2 and Table 1). When
the three brain areas studied were taken
together, BAPP*! immunoreactive struc-
tures were present in 71% and Ubi-B*!
immunoreactive structures in 100% of the
AD patients (12). In young controls and
one nondemented DS patient devoid of
neuropathology in the frontal and temporal
cortices and hippocampus, no Ubi-B*! im-
munoreactivity was found (12). When Ubi-
B*! immunoreactivity was found in elderly,
nondemented controls (>72 years), their
neuropathological diagnosis revealed the
presence of some plaques and tangles (12).
Furthermore, no BAPP™! and Ubi-B™! im-

munoreactivities were found in the substan-
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tia nigra and striatum of 11 patients suffer-
ing from Parkinson’s disease, except for the
striatum and temporal cortex of one patient
with AD neuropathology.

In the frontal and temporal cortices and
the hippocampus of AD and DS patients,
both BAPP*! and Ubi-B*! immunoreac-
tivities were present in neurofibrillary tan-
gles, neuropil threads, and dystrophic neu-
rites (Fig. 2). In many cases, BAPP*! and
Ubi-B*! immunoreactivities coexisted (Fig.
3, A and B), especially in neurons located in
layers 2, 3, and 5 (Fig. 2, A and D). The
BAPP*! or Ubi-B*! immunoreactive tan-
gles and neuropil threads formed a consider-
able subpopulation of classical Bodian silver
and Alz-50- or MC-1-stained neuropatho-
logical structures (Fig. 3, C to F). The pres-
ence of BAPP*! and Ubi-B*! in a subpopu-
lation of Alz-50 or MC-1 immunoreactive
neurons excludes the possibility that they
cross-react with hyperphosphorylated tau
protein. In a subpopulation of the wild-type
BAPP and Ubi-B immunoreactive neurons,
accumulation of BAPP*! and Ubi-B*! im-
munoreactivities was found in neurofibrillary
tangles. BAPP*! immunoreactivity was of-
ten found in restricted areas of the sections,
whereas Ubi-B*! immunoreactivity was dis-
tributed much more widely throughout the
section and was present in a higher percent-
age of AD patients. In the hippocampus,
intense BAPP*! and Ubi-B*! immunoreac-
tivities were prominent in neurofibrillary
tangles present in pyramidal cells of CAl
(Fig. 2H) and the subiculum, whereas, in the
more intensely stained cases (12), immuno-
reactivity was frequently seen as cytoplasmic
staining in CA4, CA3, CA2, and the hilus.
In the entorhinal cortex tangle, staining was
often observed in the pre-a layers (13) and
concentrated in cellular islands.

To characterize the immunoreactive
products detected in immunocytochemistry
by molecular size, we used immunoblots of
homogenates of the temporal cortex of AD
and DS patients to reveal the presence of
immunoreactive proteins with sizes [38 kD
for BAPP*! (Fig. 1C) and 11 kD for Ubi-
B*1 (14, 15)] predicted by the open reading
frames of transcripts with a dinucleotide
deletion. In young, nondemented controls,
these +1 protein bands were absent. The
eukaryotically (BAPP*!) or bacterially ex-
pressed (Ubi-B*!) recombinant proteins
corresponding to the +1 mutant proteins
served as positive controls (14, 15). Anti-
bodies to wild-type sequences of BAPP (Fig.
1C) and Ubi-B, located in the unaffected
region near the COOH-terminus with the
+1 reading frameshift, revealed bands of
the same size.

Preimmune and solid-phase adsorbed
antisera showed no reaction in paraffin sec-
tions or immunoblots. In contrast to the
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Fig. 1. (A) Partial nucleotide and amino acid sequences of BAPP ¢
and Ubi-B expressed in the wild-type (WT) and +1 reading

frame (+1 protein). Shaded nucleotides represent GAGAG and e
CTCT motifs. Peptide sequences printed in bold were used for Be "
immunization (37). Two antibodies were raised to Ubi-B*' [Y-Q f
and R-Q (indicated by lines; Ubi-B, and Ubi-B,, respectively);
both have 11 amino acids]. For BAPP, there are seven GAGAG
motifs, and the predicted molecular mass of the truncated pro-
teins is 38 kD (32). For Ubi-B, there are two GAGAG motifs (33),
and the predicted molecular mass of the truncated protein is 11
kD (monomer). Ubi-B is expressed in the brain (34). The inverted
solid triangle indicates the exons 9 and 10 junction. (B) Se-
quence gels showing a GA deletion in BAPP transcripts (exons 9
and 10) (left)and a GT and CT deletion in Ubi-B transcripts (right).
(C) Colocalization of Ubi-B*" mRNA (a) in Ubi-B*" immunore-
active cells (b) in the temporal cortex of an AD patient. In (a), the
section was counterstained with hematoxylin. Bar, 10 um. (c to
e) Immunocblots showing (c) an intense immunoreactive band at
38 kD stained with the BAPP* " antibody in the temporal cortex
of a DS patient, (d) the same band stained with an NH_-terminal
BAPP antibody (3H5), and (e) the frontal cortex of a young
control, in which no reaction was visible. In (d), the 38-kD band
can be seen, but, in the absence of previous immunoprecipitation, degradation products of BAPP were
detected as well.
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BAPP*! antibody to a region in exons 9
and 10, two BAPP*! antisera to regions of
exons 14 and 18 and a BAPP*? antiserum
(part of exon 17) did not display immuno-
cytochemical staining in any of the sections
that were positive for BAPP* 1.

To establish the nature of the mutations
resulting in the truncated BAPP*! and
modified Ubi-B*! proteins, we cloned
c¢DNAs generated by polymerase chain re-
action (PCR) into an expression vector
(16). Immunoscreening of reverse transcrip-
tase (RT)-PCR products generated from
BAPP cDNA:s of young and elderly AD and
DS patients and subsequent sequencing of
immunopositive clones revealed that, in all
AD and DS cases examined, a GA deletion
was present in either exon 9 or exon 10
(Fig. 1B and Table 2). In exon 9, a higher
frequency of mutations was found than in
exon 10. In one AD patient, GA deletions
were found in both exons 9 and 10 in sepa-
rate. mRNA molecules. No immunopos-
itive clones were found in nondemented
young and elderly control patients.

In addition, another dinucleotide dele-
tion (AGT) was found in the first repeat of
Ubi-B. This mutation is located directly
adjacent to the GAGAG motif in young
and elderly AD and DS patients (Fig. 1B
and Table 2). The frequency of Ubi-B*!
immunopositive clones was much higher
than with BAPP. In a young control, no
immunopositive clones were found, whereas
in the elderly control displaying neuropa-
thology and Ubi-B*! immunoreactivity,
not only was a GT deletion found in the
first repeat, but a CT deletion was also
found in the third repeat. A CT deletion
was also found in a DS patient. In four
patients, dinucleotide deletions were found
in both BAPP and Ubi-B transcripts as
expected from the colocalization of
BAPP*! and Ubi-B*! (Fig. 3, A and B).

To exclude PCR and cloning artifacts as
a possible explanation for the mutation, we
confirmed the presence of mutated RNA by
in situ hybridization (17). PCR artifacts
were also excluded by genomic PCR (see
below). The GA deletion in BAPP*! and
the GT deletion in Ubi-B*! transcripts
were both detected by stringent in situ hy-
bridization with an oligoprobe discriminat-
ing between wild-type and mutant (AGA)
BAPP (17) and (AGT) Ubi-B (Fig. 1C).

The mutations in BAPP and Ubi-B pro-
teins could be caused at two different levels,
either by a deletion in the DNA or by a
transcriptional defect or editing mechanism
in the RNA. The problem in detecting
mutations in the DNA is the fact that a
tissue sample inevitably contains not only
the immunoreactive cortical layers 2, 3, and
5 but also the other layers and a part of the
white matter. Thus, only about one in
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frequency of mutation (18).
With the assumption that the human
haploid genome contains 3 X 10° base pairs

10,000 cells would carry a mutation. Hence,
we developed two PCR protocols that
would be sufficiently sensitive to detect this

o
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Fig. 2. Neuritic plaques. (A and B) BAPP*" and (C) Ubi-B*' immunoreactivities in the frontal cortex of
an AD patient are present in neuritic plaques. In {(A), neuropil threads can be seen (arrowheads); s,
sulcus. In (B) and (C), a higher magnification shows immunoreactivity in dystrophic neurites and neuropil
threads (arrowheads). The core of the plaques is unstained as seen in (B) and (C). Ubi-B* ' immunore-
activity was obtained with two different antibodies (that is, Ubi-B, and Ubi-B,). Ubi-B, was most
immunoreactive and used for all immunohistochemistry. (D to H) Neurofibrillary tangles. Ubi-B*' (D to
F) and BAPP* ' (G and H) immunoreactivities in tangle-shaped structures in the temporal (D) and frontal
(E to G) cortex and the hippocampus (CA1 area) (H) of two different AD patients (D and E to H). Neuropil
threads are indicated with arrowheads. Bar in (A) and (D), 50 wm; bar in (B) and (C) and (E) to (H), 20 um.

Table 1. Immunoreactivities in the human frontal and temporal cortices and hippocampus for BAPP and
Ubi-B, for which the mRNA is expressed in the +1 reading frame (resulting in BAPP** and Ubi-B*'
protein). Tissues were obtained from controls and neuropathologically confirmed AD and DS cases (72).
Immunoreactivity present in tangles, dystrophic neurites, and neuritic plaques of patients is expressed
as a percentage of the total number of patients studied.

Frontal cortex Temporal cortex

Discase (area 11) (area 38) Hippocampus
BAPP*'  Ubi-B*' BAPP*' Ubi-B*' BAPP*' Ubi-B*!
Nondemented controls* (n = 12) 0 0 0 8+ 0 50t
ADt (n = 21) : 19 80 43 95 50 95
DS(h=7) 86 86 86 86 71 86

*Young (n = 6) and elderly (n = 6) nondemented controls. Controls were matched for sex, age, and postmortem
delay. tin elderly, nondemented patients with age-related neuropathology (tangles and plagues). tEarly- (<65
years, n = 10) and late- (>65 years, n = 11) onset AD.
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(bp) for the RT-PCR (19) and the genomic
PCR for BAPP, an equivalent of 50,000
cells (that is, 0.5 pg of total RNA and 300
ng of genomic DNA, respectively) was as-
sayed. Given the estimate of one immu-
nopositive cell out of 10,000, we should
have found about five out of 50,000 positive
clones. In the immunoscreening assay after
the RT-PCR of the RNAs, we found a
minimum of 2 and a maximum of 12 posi-
tive clones, resulting in a mean of 6 (Table
2). However, we were not successful in
finding immunopositive clones after the
genomic DNA PCR in two AD and two DS
patients. A total of 400,000 clones were
negative with immunoscreening, which also

excluded PCR artifacts in the cDNA

Fig. 3. Colocalization of (A, C, and E) BAPP*" and
(B) Ubi-B*" immunoreactivities, with (D) Bodian-
and (F) Alz-50-stained cell bodies (large arrow-
heads) in consecutive sections of the frontal cor-
tex (A to D) and subiculum (E and F) of an AD
patient. Alz-50 (F) stains neurons and neuropil
threads more abundantly than BAPP*" (E). Small
arrowheads, Alz-50-positive  neurons and
BAPP*'-negative neurons; *, capillary. Bar, 20
wm,

www.sciencemag.org * SCIENCE » VOL. 279 » 9 JANUARY 1998

screening. A similar result was obtained
with the RT-PCR and genomic PCR for
Ubi-B of one of the DS patients: 100,000
clones were negative with immunoscreen-
ing. A comparable amount of RNA and
genomic DNA resulted in 2 to 138 positive
clones (Table 2) after RT-PCR compared
with none after genomic PCR. In a best
case estimate of the variables of the genom-
ic PCR-immunoscreening approach, if
screening 100,000 colonies we should have
found five positives [for both BAPP and
Ubi-B, on the basis of the assumption of a
heterozygous genotype (6)]. Because we
found no positive clones and in a worst case
estimate this method would not be suffi-
ciently sensitive, we developed a more sen-
sitive method.

A direct discrimination between mutant
and wild-type DNA was based on the use of
primers specific for the mutation. Using 5’
oligonucleotides ending in the expected de-
letions and 3’ oligonucleotides, which hy-
bridize 100 and 674 bp downstream of the
BAPP and Ubi-B mutations, respectively,
we reached a detection level of 10 copies of
mutant ¢cDNA mixed into 500 ng of
genomic DNA (80,000 cells expressing
BAPP or Ubi-B). Under the same sensitive
conditions, that is, one copy of the mutant
DNA in 8000 cells, genomic PCR was per-
formed on human brain DNA derived from
an AD, a DS, and a control patient.

These experiments repeatedly failed to
detect any amplification products for either
BAPP*! or Ubi-B*!. We repeated the PCR
10 times, checking at least 5 pg of genomic
DNA from each patient (that is, 1.6 X 10°
copies of BAPP and Ubi-B), but none of the
PCRs showed a specific amplification prod-

. REPORTS

uct for the mutation. A PCR with oligonu-
cleotides hybridizing to the wild-type se-
quences of BAPP and Ubi-B gave the ex-
pected products. Although it is difficult to
base conclusions on a negative result, the
mixing control experiments show that there
is only a very small chance that a positive
DNA amplification product was not detect-
ed. Thus, it is likely that frameshift muta-
tions introduced in the transcripts and not in
the DNA are responsible for the +1 proteins
observed by immunocytochemistry.

Here, in the cerebral cortex of AD, DS,
and control patients, two novel BAPP- and
Ubi-B—derived proteins generated by muta-
tions of BAPP and Ubi-B transcripts were
detected. The mutations were in all in-
stances a dinucleotide deletion (AGA or
AGT) occurring preferentially in or adja-
cent to GAGAG motifs. Because we also
found a CT deletion in a CTCT motif of
Ubi-B transcripts, it seems that other dinu-
cleotide deletions in simple dinucleotide
repeats occur as well. The much higher
frequency of BAPP*! and Ubi-B*! proteins
in AD patients compared with their age-
and sex-matched controls indicates that
transcript mutation is a critical factor for
initiating neuropathology in nonfamilial
forms with early- and late-onset AD.

The absence of these +1 proteins in
patients with Parkinson’s disease, except for
one patient who also showed AD neuropa-
thology, suggests that these +1 proteins
correlate strongly with AD. Furthermore,
the +1 proteins occurred in areas known to
be severely affected in AD [for example,
CALl and the subiculum in the hippocam-
pus (20)]. The DS patients revealed intense
BAPP*! and Ubi-B*! immunoreactivities,

Table 2. Immunoscreening and sequencing of cDNA of BAPP and Ubi-B for dinucleotide deletions in
the cortex and hippocampus of AD and DS patients and nondemented control patients.

. Total number Number of Dinucleotide
Disease of clones positive clones deletion
BAPP*1
Control 1* 20,000 0 -
Control 2t 20,000 0 -
AD% 20,000 10 AGA (exon 9)
AD 13§ 20,000 2 AGA {exon 10)
AD 28| 20,000 5 AGA (exons 9 or 10)
AD 38, 20,000 5 AGA (exon 9)
DS 1§ 20,000 2 AGA (exon 9)
DS 2§ 20,000 12 AGA (exon 9)
Ubi-B*1

Control 1* 20,000 0 -
Control 2t 20,000 13 AGT or ACT
AD% 5,000 15 AGT
AD 11§ 1,500 138 AGT
AD 2§|| 2,000 32 AGT
DS 1§ 800 44 AGT
DS 1,000 2 AGT or ACT
DS 2§ 20,000 93 AGT

*Young, nondemented control patient.
tEarly-onset AD (<65 years).
onset AD (>65 years).

§Patients with a dinucleotide deletion in both BAPP and Ubi-B transcripts.

‘tElderly, nondemented control patient with age-related neuropathology.

|ILate-

245



except for one DS partient, who did not
display any neurodegeneration in the three
areas studied and did not suffer from de-
mentia (I12). Consistent with the idea that
the transentorhinal cortex is an early target
for neuropathological changes in AD (13),
in the nondemented DS patient, BAPP ¥,
Ubi-B 71, and Alz-50 immunoreactivities
coexisted in Bodian-stained tangles in cel-
lular islands of the pre-a layers. The age-
related presence of Ubi-B*! immunoreac-
tivity in the hippocampus of nondemented
controls indicates that the Ubi-B*! peptide
may contribute to initial stages of neurode-
generation in AD. The Ubi-B*! protein
may therefore be a valuable diagnostic tool
for the early detection of AD.

Because enhanced transcriptional activ-
ity may be correlated with the presence of
+1 proteins (5), it is possible that a tran-
script mutation resulting in BAPP™! and
Ubi-B*! proteins occurred. This idea is best
illustrated in DS, in which BAPP gene ex-
pression is much higher than expected on
trisomy 21 alone (21-23). On the other
hand, the lower frequency of BAPP™! pro-
tein in AD patients (Table 1) is consistent
with the fact that their BAPP transcript
levels are not essentially increased (24, 25).
The high frequency of Ubi-B*™! protein in
AD and DS is in accordance with overex-
pression of the Ubi-B gene (7, 26).

The coexisting BAPP™! and Ubi-B*!
proteins, as well as other +1 proteins, may
impair neuronal functioning and amplify or
induce neuropathology in an as yet unknown
manner. For instance, the Ubi-B™! mole-
cules may be responsible for the lack of
multiubiquitylation of the hyperphosphoryl-
ated tau-rich neurofibrillary tangles that ac-
cumulate during the long period of neurode-
generation (9). One explanation for these
findings is that the Ubi-B*! molecules are
unable to bind to lysine residues in target
molecules, because they lack the COOH-
terminal glycine residue in the first repeat,
which is essential for subsequent multiubig-
uitylation and activation of the proteasomal
machinery (27). This process does not seem
to occur efficiently in cells with tangles in
AD. No Ubi-B-associated COOH-terminal
hydrolase and 26S proteasomal immunoreac-
tivity have been found in compact tangles
(28, 29).

This study shows that BAPP and Ubi-B
transcripts can be modified by dinucleotide
deletions (AGA, AGT, or ACT). The GA
deletion is similar to the one reported in
vasopressin transcripts of the homozygous
Brattleboro rat (5). The frequently mutated
motif in exon 9 of the BAPP gene transcript
is in fact an extended version of GAGAG
(that is, GAGAGAGA) (Fig. 1). We also
addressed the issue of whether the dinucle-
otide deletions occur at the transcript or the
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genomic level. Although we used two differ-
ent sensitive approaches to reveal a genomic
mutation, we failed to find any indication of
a mutation at the genomic level. Support for
the possibility of a general process of tran-
script mutation was provided by the present
results showing that BAPP™! and Ubi-B™!
proteins are coexpressed within the same
neurons. In addition, in individual AD and
DS patients, two or three different dinucle-
otide deletions were found in two different
transcripts, which makes a genomic event
unlikely. We thus tentatively conclude that
these modifications may take place during or
after transcription. In view of the finding
that frameshift mutations occur in multiple
proteins within the same neuron, we postu-
late that a common denominator in the
transcription-propagating events is involved.
The mechanism of transcript mutation
(AGA, AGT, or ACT) is, however, unclear.
It is most probably not restricted to postmi-
totic cells, because we were able to show that
an ectopically expressed rat vasopressin
transgene undergoes a similar process in di-
viding cells (30).

Transcript mutation may thus be a widely
occurring phenomenon. In principle, each
transcript containing a susceptible motif,
such as GAGAG, could undergo such a
process. However, postmitotic neurons are
less capable of compensating for transcript-
modifying activity and are thus particularly
sensitive to the accumulation of frameshifted
proteins. Accumulation of +1 proteins to-
gether with the consequent lack of function-
al proteins is probably critical for cellular
functioning. Thus, during aging, single neu-
rons may generate and accumulate abnormal
proteins, consequently leading to cellular
disturbances and causing degeneration. The
mechanism of dinucleotide deletion at the
transcript level may well underlie a number
of neurodegenerative pathologies.
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