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Activation of the Cardiac Calcium Release
Channel (Ryanodine Receptor) by
Poly-S-Nitrosylation

Le Xu,” Jerry P. Eu,* Gerhard Meissner,T Jonathan S. Stamlert

Several ion channels are reportedly redox responsive, but the molecular basis for the
changes in activity is not known. The mechanism of nitric oxide action on the cardiac
calcium release channel (ryanodine receptor) (CRC) in canines was explored. This tet-
rameric channel contains ~84 free thiols and is S-nitrosylated in vivo. S-Nitrosylation of
up to 12 sites (3 per CRC subunit) led to progressive channel activation that was reversed
by denitrosylation. In contrast, oxidation of 20 to 24 thiols per CRC (5 or 6 per subunit) had
no effect on channel function. Oxidation of additional thiols (or of another class of thiols)
produced irreversible activation. The CRC thus appears to be regulated by poly-S-ni-
trosylation (multiple covalent attachments), whereas oxidation can lead to loss of control.
These results reveal that ion channels can differentiate nitrosative from oxidative signals
and indicate that the CRC is regulated by posttranslational chemical modification(s) of

sulfurs.

Mammalian tissues’ express three major
isoforms of nitric oxide synthase (NOS)
(I). All three NOSs have been identified in
cardiac or skeletal muscle in close associa-
tion with the sarcolemma and have been
implicated in the regulation of force pro-
duction (1-3). Cytosolic Ca®*, the primary
determinant of force, is released from the
sarcoplasmic reticulum (SR) by a ryanod-
ine-sensitive CRC in response to a muscle
action potential. In cardiac muscle, the
CRC is opened by Ca’* ions that enter the
myocyte through a voltage-sensitive dihy-
dropyridine receptor or L-type Ca’* chan-
nel in a process known as Ca’*-induced
Ca’" release (4). Ca?™ ions can also in-
crease the activity of NOS 1 and NOS 3 ([,
3). Nitric oxide (NO) then exerts its effects
by covalently modifying or oxidizing critical
thiols or transition metals in proteins (5).
NO may be a physiological modulator of
excitation-contraction (E-C) coupling. It is
produced at the sarcolemma, it cycles in the
beating heart on millisecond time scales, and
it modulates contractility (3). Both the L-
type Ca’* channel (6, 7) and CRC (8) are

potential targets of NO or related molecules
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because they contain sulthydryls whose oxi-
dation modulates their function and influ-
ences E-C coupling (9). Indeed, intramolec-
ular disulfide formation is thought to be the
molecular correlate of NO-mediated changes
in channel activity (7, 10). In this model,
channels cannot distinguish NO signals from
other redox active species—that is, they are
thought to sense changes in oxidation state
rather than the individual species responsi-
ble for such change. Our results indicate that
poly-S-nitrosylation reversibly activates the
CRC, whereas comparable degrees of thiol
oxidation do not. We further identify at least
one other redox site whose oxidation irre-
versibly activates the release channel and
could impair muscle function.

CRC purified from canine hearts con-
tained S-nitrosothiol (SNO) groups (74 *
35 pmol of SNO per milligram of CRC; n =
6) if dithiothreitol (DTT) was eliminated
from the standard buffers used in purification
(11, 12), whereas inclusion of DTT resulted
in almost complete loss of SNO (0.5 pmol of
SNO per milligram of CRC; n = 2). In other
words, the CRC is endogenously S-nitrosy-
lated and this posttranslational modification
is reversible. Low-mass SNOs are one class of
endogenous compounds capable of protein
S-nitrosylation (13). To examine their ef-
fects on single cardiac CRCs, we incorporat-
ed proteoliposomes containing purified
channels into planar lipid bilayers (11, 14).
Channel activity can be reliably monitored
in a medium containing monovalent cations
because the cardiac CRC does not conduct
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Fig. 1. Effects of GSNO (A and B), CysNO (C), and
SIN-1 (D) on cardiac CRC activity. (A) Effect of
GSNO. Proteoliposomes containing the purified
CRC were fused with a planar lipid bilayer. Single
channel currents, shown as upward deflections from
the closed levels (c on left), were recorded in sym-
metric medium of 0.25 M KCl and 20 mM potassium
Hepes (pH 7.4) containing 2 pM free Ca®* before
(top trace) and 1 min after successive addition of 1
mM GSNO (middle trace) and 10 mM DTT (bottom
trace) to the cis (SR cytosolic) side of the bilayer
chamber. Holding potential was +35 mV. (B) Time
course of GSNO effects. P, values were obtained
from recordings as in (A) from 1-min data files before
(solid circle) and after (open circles) addition of 1 mM
cytosolic GSNO and are means + SE of seven ex-
periments. *Significantty different (P < 0.05) from P
before addition of GSNO. (C) Effect of CysNO. A
single CRC was recorded as in (A) before (top trace)
and after successive addition of 100 pM CysNO
(middle trace) and 10 mM DTT (bottom trace) to the
cis chamber. (D) Effect of SIN-1. A single CRC was
recorded as in (A) before and after successive addi-
tion of 200 pM SIN-1 (middle trace) and 20mM DTT
(bottom trace) to the cis chamber.

+10 mM DTT

anions such as Cl~ and it conducts mono-
valent cations more efficiently than Ca?*
(15). With K* as the current carrier, single
channel conductance is 770 pS (16). In pre-
liminary experiments, SNOs activated the
CRC, so recordings were made in the pres-
ence of a submaximally activating concen-
tration of free Ca?* (2 uM) in the cis (SR
cytosolic) chamber. Addition of 1 mM S-
nitrosoglutathione (GSNO) to the cis cham-
ber resulted in increased CRC activity with-
out an apparent change in single channel
conductance (Fig. 1A). Channel open prob-
ability (P,) increased from 0.128 to 0.203
within 1 min after addition of the nitroso-
thiol. A similar 2- to 2.5-fold activation was
observed 1 to 5 min after addition of GSNO
in seven separate recordings (Fig. 1B). Ad-

www.sciencemag.org * SCIENCE ¢ VOL. 279 ¢ 9 JANUARY 1998

Table 1. Cardiac CRC: Channel activation and S-nitrosylation. Data are means + SE of the number of
experiments indicated in parentheses. The control £, (without sulfhydryl reactive compound) was 0.14

+0.02 (n =69).
Py (% of control) SNO/CRC subunit (moV/mol)
Compound mM
-DTT +DTT -DTT +DTT
GSNO 0.1 108 =32 (4) 0.4 0.2 (6)
05 148 + 20 (15)* 1.1 +0.1(4) 02 +0.1)
1.0 236377 144 297}t 27 +£05(12) 0.7 035
20 223*58(8)
CysNO 0.01 116 +x20(8 105 + 9 (8) 0.3+0.2(Q
0.03 156 * 20 (6)* 499 * 211 (6)
0.10 339 +77(Q)* 527 =107 (9" 1.6 =0.3(15 0.001 = 0.002 (4)
SIN-1 0.1 173 = 15(3)* 0+x0(
02 220+24(7) 262+43(7*  0.06 * 0.06 (3)
05 173 +51(5)
1.0 158 = 66 (5)

N-Ethylmaleimide 2.0 273 * 76 (6)*

*Significantly different from control (before addition of SNO or SIN-1) (P < 0.05 as determined by Student’s unpaired

t test). 1Significantly different (P < 0.05) from samples treated with 1 mM GSNO.
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Redox-related modifications by NO donors. Proteoliposomes containing the purified CRC reacted with
monobromobimane, wiich detects free but not S-nitrosylated or oxidized thiols before and after
treatment with GSNO, CysNO, or SIN-1 as described in (78). The number of thiols lost to S-nitrosylation
{(open bars) or oxidation {shaded bars) by NO donors is shown. Data are means * SE of five to eight
determinations. Before treatment with the NO donors, the number of free cysteines was 84 + 4 (n = 13)
(21 per CRC subunit), as determined by bimane reactivity.

dition of 10 mM DTT to the cis chamber
returned channel activity close to that of
untreated channels (Fig. 1A; Table 1),
whereas DTT by itself had no effect (n = 9).
DTT could have reversed either S-nitrosyla-
tion or thiol oxidation to disulfide. The SH-
alkylating reagent N-ethylmaleimide acti-
vated the channel to a similar extent as
GSNO (Table 1), demonstrating that direct
covalent modification of thiols (that is, by
alkylation or nitrosylation) can affect chan-
nel activation.

S-Nitrosylation of the CRC was directly
measured (12) in proteoliposomes after re-
action with GSNO under conditions that
led to activation of single channels (14)
(Fig. 1A). Channel activation required the
nitrosylation of many thiols. Modification
of ~2 sites per CRC was associated with
minimal activation, modification of ~4
sites per CRC was associated with modest
(~50%) activation, and modification of

~11 sites per CRC (~3 per subunit) was
associated with two- to threefold activation
(Table 1). Addition of a concentration of
DTT that resulted in loss of most NO
groups reversed the activation. Thus, the
ryanodine receptor appears to be progres-
sively activated as up to ~3 SH groups per
CRC subunit are S-nitrosylated.

The structure of the target protein and
nature of the NO donor and milieu deter-
mine the efficiency of thiol modification by
either nitrosylation or oxidation (5, 13, 17).
In particular, the extent of S-nitrosylation
was about twofold greater in the active chan-
nel conformation (induced by 10 pM Ca?*)
than in the inactive state (induced by 5 mM
Mg?*) (Fig. 2A). The specificity of the ni-
trosylating compound was further illustrated
by the effects of S-nitrosocysteine (CysNO),
a smaller (less restricted) and more potent
NO donor than GSNO. Cytosolic CysNO
(0.1 mM) increased P, from 0.039 to 0.092,
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a condition under which 6.4 thiols per CRC
(~2 per subunit) were nitrosylated (Table
1). CysNO concentrations as low as 30 uM
produced a significant increase in P_. A low-
er concentration (10 uM) that did not acti-
vate the channel resulted in only one SNO
per CRC (Table 1). Addition of 10 mM
DTT resulted in NO group removal. How-
ever, whereas DTT returned GSNO-activat-
ed channel activity close to that of controls
(Fig. 1A and Table 1), it did not reverse the
effects of CysNO (Fig. 1C and Table 1).
These results are best rationalized by CysNO
oxidizing channel sites that are not accessi-
ble to GSNO or DTT (13).

To test the possibility that oxidation of
the CRC can lead to irreversible activation,
we quantified the number of free thiols on
the purified receptor with a lipophilic fluo-
rescent monobromobimane before and after
exposure to GSNO and CysNO (18). The
purified, tetrameric CRC has a total of 364
cysteines [89 cysteines per 560-kD subunit
(19) and 2 per FK506 binding protein 12.6
(20)] of which ~84 = 4 (mean * SE;n =
13) or ~21 per subunit are free, as deter-
mined by bimane reactivity. This is a large
number of free thiols; typically, no more
than one or two intramolecular cysteines are
reactive in proteins. CysNO and GSNO de-
creased the number of reactive thiols to an
extent greater than could be accounted for
by S-nitrosylation (Fig. 2B). The difference
(or excess loss) is indicative of oxidation.
The inverse relationship between oxidation
and nitrosylation by GSNO is consistent
with a report that NO prevents disulfide-
mediated activation of the ryanodine recep-
tor (21)—that is, S-nitrosylation may block
formation of some disulfides. GSNO oxi-
dized 5.5 thiols per CRC subunit and
CysNO oxidized 7.3 thiols per CRC (two
extra thiols per subunit) (Fig. 2B). SNOs are
not known to oxidize thiols beyond disulfide
(7, 13, 17) (although we cannot definitively
exclude radical-based higher oxidation of
sulfur mediated by CysNO homolysis). Thus,
CysNO led to apparent formation of one
more disulfide per CRC subunit.

We also tested the effects of 3-morpholi-
nosydnonimine (SIN-1), which generates
the NO-related species peroxynitrite
(OONO") (17). This molecule shares with
SNOs a reactive predilection for thiols, but
it is a stronger oxidant (17). Like CysNO,
SIN-1 produced severalfold activation of the
channel, which could not be reversed by
reducing conditions (Fig. 1D and Table 1)
and caused the (same) loss of ~10 thiols per
CRC subunit (Fig. 2B). However, the func-
tional effects of SIN-1 were associated with
thiol oxidation in the absence of S-nitrosy-
lation (Fig. 2B). Taken together, our results
suggest that (i) oxidation of 5.5 thiols per
CRC subunit (presumably forming two or

236

three disulfides) occurs readily but without
affecting CRC function (0.1 mM GSNO in
Fig. 2B; Table 1); and (ii) oxidation of seven
or more thiols per subunit (or more than
three disulfides) is associated with irrevers-
ible activation (SIN-1 and CysNO in Fig. 2B
and Table 1). Thus, apparent formation of
one extra disulfide per subunit may be re-
sponsible for the irreversibility. Altemative-
ly, oxidation of a distinct class of thiols
exhibiting differential reactivity toward
these compounds could account for the re-
sults. Although we are entirely open to the
possibility that formation of sulfinic or sul-
fonic acids contributes to irreversible chan-
nel activation, it is not unusual to find in-
tramolecular disulfides resistant to DTT re-
duction, particularly when conformational
changes are produced in proteins (22).

Intramolecular disulfide formation is typ-
ically favored as the mechanism of redox
regulation in proteins in general and in ion
channels in particular (7, 10, 23). However,
it is difficult to reconcile NO activation of
the CRC with oxidation or to argue for a
“disulfide switch” in the regulation. Quite
extensive thiol oxidation occurred without a
change in CRC function, and oxidative ac-
tivation, attributed to loss of two extra thi-
ols, was irreversible, making it more likely to
be of pathophysiological than of physiologi-
cal significance. Endogenous CRC effector
molecules  including Mg?*, adenosine
triphosphate, and calmodulin (15) may nat-
urally protect from oxidation by changing
protein conformation; the structure dictates
the geometry and proximity of dithiols and
thus their propensity for forming disulfides.
On the other hand, reversible dose-depen-
dent activation is well explained by multiple
covalent modifications of the CRC. Specif-
ically, the extent of S-nitrosylation (poly-S-
nitrosylation) correlated with the degree of
activation; S-alkylation likewise activated
the CRC; and denitrosylation reversed the
activity. This modus operandi includes the
possibility that low-level CRC oxidation fa-
cilitates activation by S-nitrosylation; in-
deed, oxidation and nitrosylation occurred
simultaneously (Fig. 2B). Other covalent
modifications or reversible chemical addi-
tions to sulfurs, such as S-thiolation by reac-
tive disulfides and sulfenic acid derivatiza-
tion by peroxides, may have comparable ef-
fects on the CRC (24).

Our findings further illustrate that thiols
in proteins can recognize both nitrosative
and oxidative events and, moreover, can
distinguish between them. Thus, either par-
ticular thiols in the CRC (monothiols versus
dithiols) subserve different sensory and reg-
ulatory functions, or particular chemical
modifications of thiols (nitrosylation versus
oxidation) elicit distinct functional changes,
or both. Recent identification of polynitrosy-

Fy i

lated proteins in vivo (25) strengthens the
case for such chemical modifications having
physiological relevance. The use of multiple
covalent attachments as a means to modu-
late protein function is reminiscent of regu-
lation by phosphorylation.

The CRC contains a large number of
thiols and is thus poised for regulation by
redox events. We offer the following model.
In the resting state, cardiac muscle may pro-
duce small amounts of (S)NO that are suf-
ficient to down-regulate the L-type Ca®*
channel by a guanosine 3’,5’-monophos-
phate (cGMP)-dependent mechanism (pos-
sibly a tonic effect) (3, 7, 26). The CRC is
maintained in a low activity state by low
[Ca?*] and effectors such as Mg?™, which
prevent S-nitrosylation. With muscle activa-
tion, the influx of Ca?* activates the CRC
and NOS. (S)NO production overrides
c¢GMP inhibition of the L-type Ca?* chan-
nel (7) and leads to concerted activation of
the CRC (now in a permissive conforma-
tion) by poly-S-nitrosylation. Auxiliary
chemical additions at sulfurs, mediated by
reactive oxygen or nitrogen species, may also
affect CRC activity (24). The subsequent
decrease in Ca’* will inactivate NOS and
switch the channel conformation to favor
denitrosylation (I, 3). The allosteric mech-
anism would resemble that in hemoglobin,
where S-nitrosylation occurs in the R struc-
ture and denitrosylation occurs in the T
structure (27). By contrast, oxidative or ni-
trosative stress may have deleterious conse-
quences because of excessive modification of
the receptor. Indeed, some thiols may serve
to buffer responses and protect from exces-
sive oxidation. We suggest that NO and
related molecules may regulate E-C coupling
through discrete mechanisms. On the one
hand, they can inhibit the L-type channel
via cGMP; on the other hand, they sensitize
the muscle to Ca?*-induced Ca?™ release by
chemical modifications of thiols.
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Functional Expression of a
Mammalian Odorant Receptor

Haiging Zhao, Lidija lvic, Joji M. Otaki, Mitsuhiro Hashimoto,
Katsuhiro Mikoshiba, Stuart Firestein*

Candidate mammalian odorant receptors were first cloned some 6 years ago. The
physiological function of these receptors in initiating transduction in olfactory receptor
neurons remains to be established. Here, a recombinant adenovirus was used to drive
expression of a particular receptor gene in an increased number of sensory neurons in
the rat olfactory epithelium. Electrophysiological recording showed that increased ex-
pression of a single gene led to greater sensitivity to a small subset of odorants.

Olfactory transduction begins with the
binding of an odorant ligand to a protein
receptor on the olfactory neuron cell surface,
initiating a cascade of enzymatic reactions
that results in the production of a second
messenger and the eventual depolarization of
the cell membrane (I). This relatively
straightforward and common signaling motif
is complicated by the existence of several
thousand odorants, mostly low-molecular-
weight organic molecules, and nearly a thou-
sand different putative receptors (2, 3). The
receptors are believed to be members of the
superfamily of G protein—coupled receptors
(GPCRs) that recognize diverse ligands, in-
cluding the biogenic amine neurotransmit-
ters. Although the putative odorant recep-
tors constitute the largest subfamily of
GPCRs, in some ways they remain the most
enigmatic, because no particular mammalian
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receptor has been definitively paired with
any ligand. Functional expression of cloned
odorant receptors would allow the character-
ization of the chemical receptive fields that
provide the basis for coding and organization
in the olfactory system.

A functional expression system for odor-
ant receptors requires both that the recep-
tors are properly targeted to the plasma
membrane, and that they couple efficiently
with a second messenger system that pro-
duces a measurable response to ligand stim-
ulation. On the simple assumption that ol-
factory neurons themselves would be the
most capable cells for expressing, targeting,
and coupling odorant receptors, we have
endeavored to use the rat nasal epithelium
as an expression system, driving the expres-
sion of a particular receptor by including it
in a recombinant adenovirus and infecting
rat nasal epithelia in vivo. Here, we relied
on the large number of putative odorant
receptors, and their approximately equal ex-
pression among the 6 million neurons of the
rat olfactory epithelium, to identify the av-
erage increase in response in an epithelium
in which one of these receptors is overex-
pressed (4). This can be measured extracel-
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