temperature, 120 K. Therefore, we conclude
that the formation of the 2D small polaron
is governed by quantum dissipative process-
es such as tunneling, and the classical the-
ory is not applicable to this system.

It is encouraging that the parameters
extracted from the fit (legend to Fig. 5A)
are consistent with known values for pol-
arons in other molecular solids: E . is con-
sistent with the dynamic modulation of the
polarization energy (~0.03 eV) for elec-
tron-phonon interaction in organic crystals,
and E, is similar to the effective formation
energy (0.15 eV) of a molecular polaron in
polyacene crystals (23). The lattice relax-
ation energy (E,, = E_ + E, ) is compara-
ble to the localization energy (}Sloc (24), and
hence, the self-trapping energy (Eq. 3) is
small for this system. The energy of fiw,
corresponds to an in-phase methylene rock-
ing mode of n-heptane (25). The oscillatory
dependence of k, on —Ae (Fig. 5A) is
reproduced. The first maximum corre-
sponds to the usual classical inverted region
resulting from the intermolecular modes
(—Ae = E_). Subsequent maxima originate
from a resonant effect resulting from the
excitation of the intramolecular mode (26)
and the interval between maxima is fio
(see Fig. 5A). Finally, with the use of the
above parameters and path integral theory,
the temperature dependence of k is repro-
duced with no other adjustable parameters
(Fig. 5B). The non-Arrhenius behavior re-
sults from nuclear tunneling in the high-
frequency mode.

Our results demonstrate that the ability
to both time- and angle-resolve the dynam-
ics of electrons at interfaces allows a quan-
titative determination of the relaxation en-
ergies and lattice displacements associated
with the small-polaron self-trapping pro-
cess. Our results provide an experimental
basis for further theoretical studies. Time-
and angle-resolved TPPE is a powerful
probe for 2D electron localization and
should also be applicable to a wide variety
of interfaces.
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Photonic Channels for Quantum
Communication

S. J. van Enk, J. |. Cirac, P. Zoller

A general photonic channel for quantum communication is defined. By means of local
quantum computing with a few auxiliary atoms, this channel can be reduced to one with
effectively less noise. A scheme based on quantum interference is proposed that iter-
atively improves the fidelity of distant entangled particles.

Security for communication of sensitive
data over public channels such as the Inter-
net is indispensable nowadays. Quantum
mechanics offers the possibility of storing,
processing, and distributing information in
a proven secure way by exploiting the fra-
gility of quantum states and the fact that
they cannot be cloned (I). In practice,
many obstacles stand in the way of imple-
menting a reliable quantum network. Al-
though remarkable progress has recently
been made experimentally in the context of
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Technikerstrasse 25, A-6020 Innsbruck, Austria.

quantum cryptography and computation
(2), the presence of errors during the trans-
mission and processing of quantum infor-
mation remains as the main obstacle. In
principle, these problems could be circum-
vented with ingenious schemes for purifying
states (3) and correcting errors (4), because
they allow the transmission of intact quan-
tum states even in the presence of errors.
These “standard” methods require a large
(in principle, infinite) number of extra
quantum bits (qubits) to store intermediate
information. However, in the first genera-
tions of experiments on quantum networks,
one expects to be able to store and manip-
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ulate only a few qubits in each location.
Thus, new methods are needed to overcome
the presence of errors during quantum com-
munication in small physical systems.

Recently we proposed a physical imple-
mentation based on cavity quantum electro-
dynamics (QED) (5) to accomplish ideal
transmission over a noisy channel where the
dominant error is due to photon absorption
(6). We modeled photon absorption by a
Markovian process and showed how this
property can be exploited to convey intact
quantum information within a quantum net-
work composed of small physical systems.
Although this assumption is restrictive, it
shows that one has to reconsider the defini-
tion of quantum channels, which leads to
nonstandard methods of purification and er-
ror correction.

In this work we define a general channel
for communication via photons and show
how to transmit quantum information via
that channel. This channel is not based on
a particular physical model, does not use the
Markov property, and includes all possible
errors during transmission. Moreover, in
contrast to usual definitions of noisy quan-
tum channels [such as the depolarizing
channel or the erasure channel (7)], we do
not describe the action of the channel only
in terms of classical probabilities but allow
for quantum interference effects. In fact,
these quantum interferences allow one, un-
der certain conditions, to transmit quantum
states over channels that have so much
noise in terms of classical probabilities that
one would be led to believe no quantum
information could be transmitted at all. The
scheme we propose is based on “channel
reduction,” which consists of combining lo-
cal operations and measurements with mul-
tiple uses of the channel to reduce the
description to a simplified effective chan-
nel. Using this effective channel and ex-
ploiting quantum interference effects, we
show how to create a perfect distant maxi-
mally entangled state [Einstein-Podolsky-
Rosen (EPR) pair] utilizing only three
qubits at each location. With teleportation,
one can then send any unknown quantum
state securely without distortions (8).

To define the photonic channel, we de-
note by 10) and I11) the states of the qubit
that a sender, traditionally called Alice,
transmits to the receiver Bob, and by IE)
the initial state of the environment. The
action of the most general channel leaving
the qubit inside its original two-dimension-

al (2D) Hilbert space is

IONE) = (I0)Too + I1)To))IE)
INE) = (10T + I1)T1)IE)

(1a)
(1b)

where the operators T act on the environ-
ment. In analogy with the definition of
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classical channels, one typically character-
izes a channel by the probability that a
qubit is transmitted without distortion, as
well as the probability of occurrence of
certain specific errors. For example, the de-
polarizing channel (7) assumes that with
probability F the qubit is transmitted intact
and with probabilities (1 — F)/3 it suffers a
sign flip, a spin flip, or both, which are
represented by the Pauli spin operators o,
acting on the qubit. One usually has in
mind a situation where the states of the
qubit correspond to two orthogonal polar-
izations of a photon. Errors are changes of
polarization, of the relative phase, or both.
However, this description of the channel
does not take into account the possibility of
photon absorption or photon emission. In
fact, for realistic channels, photon absorp-
tion is the dominant error, whereas the
creation of photons in a particular given
mode at optical frequency can be safely
neglected. With this in mind, the best
choice for encoding information in photons
is to assign the state 10) to sending no
photon, with the simple idea that, if one
sends no photon, it cannot be absorbed.
The state 1) is chosen as one of the polar-
ization states. Therefore, this channel acts
as follows

10) — 10)T, (2a)

(1) > 1T, + 10)T, (2b)

where we have omitted the initial state of
the environment. The operator T, describes
the disappearance of a photon of the chosen
polarization, due either to photon absorp-
tion or to a polarization change. We em-
phasize that this formulation of encoding
and transmission (Eq. 2) incorporates more
physical processes (that is, is more general)
and yet is simpler than the one using two
polarizations (see Eq. 1).

We must include in the description of
the channel the fact that the photon is
created by matter. In general, we can as-
sume that the photon is produced by mak-
ing an atom change its internal state. We
wish to describe this process in the most
general fashion. We consider two atoms A
and B belonging to Alice and Bob, respec-
tively. We denote by 10) and 1) two inter-
nal levels of the atoms, and by Ix) any other
level that may be involved in the process.
As in (5), we consider a transmission pro-
cess in which the sending atom will produce
a photon only if it is in the state 11). Under
ideal conditions, this photon will be ab-
sorbed by the receiving atom, which will be
transferred from the state 10) — [1). In
reality, there will be errors involving both
atoms and photons. For the photons, all
possible errors are described by Eq. 2. For
the atoms, we only require that if the send-

ing atom is in the state 10), then no photon
is produced; and if no photon reaches the
receiving atom, which is in the state 10), it
does not change state. Any other error can
take place; for example, transfer of the atom
to any other state |x). In order to keep the
atoms in the 2D Hilbert space after the
transmission, we optically pump the send-
ing atom to the state 10); and in the receiv-
ing atom, we pump any state Ix # 0, 1) to
the state 10) (9). The states of the atoms
undergo the following process:

10)410)g = 10)410)5T, (3a)

11)al0) = 10)4(11)s T + 10)sT,)  (3b)

To Ty, and T, contain spontaneous emis-
sion errors, photon absorption, and transi-
tions to other states, followed by repumping
to 10); all the physics is in these formulas. A
possible way of implementing the process
described by Eq. 3 is to use the scheme of
(5). In a quantum network, there might be
other atoms entangled with A and B. We
emphasize that the above definition also
applies to this situation. In the following,
we will call a channel defined by Eq. 3 the
photonic channel. The goal is thus to es-
tablish a perfect EPR pair, using the pho-
tonic channel. It is instructive to consider
the channel as defined in Eq. 3, using its
classical definition. There are nonzero
probabilities of errors described by the op-
erators o, and o . = (o, — i0,)/2. Straight-
forward application of the standard purifi-
cation scheme to a situation with a finite
number of atoms is not possible.

The possibility of (error-free) local
quantum computing allows us to reduce the
photonic channel (Eq. 3) to a channel
without the absorptive term T, We will
first present an outline of the key idea and
then describe the process in detail. Let us
assume that Alice has an initial arbitrary
state in atom A (which could be entangled
with other atoms in the network). -Bob has
atom B initially in state 10),. In addition,
Alice and Bob need two and one auxiliary
atoms in state 10), respectively. Alice per-
forms local operations with her particles
and makes several transmissions to Bob us-
ing the photonic channel. Bob performs
local operations and measurements. For a
positive outcome of the measurement (see
below), the mapping between the initial
and the final state is given by

10)410)5 > 10)410)5S0 (4a)
11)410)5 = 11)411)5S, (4b)

where the operators S act on the environ-
ment (see below for the specific form),
and the auxiliary atoms end up in 10). For
the opposite outcome, we recover the ini-
tial state of all atoms perfectly. By repeat-
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ing the above scheme until a positive out-
come is obtained, one accomplishes the
mapping of Eq. 4 with certainty. The
above protocol defines an “effective chan-
nel” that is absorption free: By comparing
Eq. 3 with Eq. 4 we see that the effective
channel acts like the photonic channel
but without an absorption term (T,). In
the following, we will call channel reduc-
tion a protocol that combines local quan-
tum computing with several transmissions
to obtain an effective, less noisy channel.

The proof of the channel reduction in-
volves two layers of protocols, which we
describe here. (i) Alice applies a controlled-
NOT operation to atom A and an auxiliary
atom, and then uses the photonic channel
to transmit the state of this atom to B. The
mapping of this protocol will be

10)al0)g > 10)410)5 T
I1)Al0Yg > I1)AI1YET, + 11)A10)T,

(5a)
(5b)

where the state of the auxiliary atom fac-
torizes out. Equation 5 corresponds to an
effective channel, which will be used in
the following. (ii) We apply a Hadamard
transformation to atom A, followed by a
controlled-NOT with the auxiliary atom
A, (which acts as a backup). Then we
transmit the qubit A to B (at time t)
according to Eq. 5, apply the operation
NOT to atom A, transmit the qubit A to
B, (at time t') according to Eq. 5, and
apply a NOT operation to atom A again.
Now a measurement is performed on at-
oms B and B, to check whether they are in
the state |O>B|O>B ) If the outcome is
“no,” we perform the urutary transforma-
tion 10)31 g = 10)510)g , and 11)510)5 —

\1>B|O>B, and measure the state of A If
the outcome is 10),, then we have Eq 4
with S, T (t )T (1) and S, =
To()T (), and srmrlarly if |1>A Here
T, (1) and T, ((t") denote the environ-
ment operators acting at time ¢t and t’ (first
and second transmission, respectively).
(b) If the outcome is “yes,” we measure the
state of A and then swap the state of A,
into A. If the outcome was 10) ,, then one

has
10)A10)5 => 10)410)5S, (6a)

with S, = T, (t')T(t), and similarly if it is
(1) ,. This mapping is the identity, because
the environment operator factors out.
Therefore, we can repeat this protocol until
we obtain a “no” in the measurement.

We define a stationary channel as the
one fulfilling

T(t")To(t) = To(t)T (1) (7

when acting on the environment. In partic-
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ular, this is true if the Markovian property
considered in our previous work (6) holds.
In that work, photon absorption was mod-
eled with a Markovian master equation, and
the other errors were assumed to be system-
atic (that is, the same in two subsequent
transmissions). In the stationary limit (Eq.
7), the channel in Eq. 4 allows for ideal
transmission in a single try. In contrast, we
are interested in the general case where the
stationarity property does not apply. In par-
ticular, this will be the case where there are
additional random errors and when a Mark-
ovian description of decoherence is ques-
tionable. In the following, we will show
how to establish distant EPR pairs using the
channel in Eq. 4.

Alice and Bob repeatedly perform the
process described below. In the Nth inter-
mediate stage, the state of particles A and B
is a superposition of two Bell states (“right”
and “wrong”) IR) 45 = 10041005 + 11)411)5
and IW) .5 = 10)411)5 + [1),10)5 (we omit
normalization factors of 1/7/2)

W) = IR) sl Ex™) + 1W)aplEy™) (8)

where [Eg ™) are unnormalized states of
the environment. In order to characterize
the quality of the state in Eq. 8, we define
its fidelity as Fyy = [IEx"™)|12. The goal is to
increase the fidelity so that for large N the
state of the system will tend to IR).

Initially, Alice prepares her qubit A in
the state |+), and Bob prepares his qubit B
in 10). They use the channel in Eq. 4, and
then both of them apply the local Had-
amard operation 10) i— |+), and 11) — [—),
where we have defined \i) = 10) = Il).
Thev obtain Eq. 8 with [E'y ) = 1/2(S; =

IE) where |E) is the initial state of the
envrronment They repeatedly perform the
following process using two auxiliary atoms
A, and B,

1) The auxiliary qubit A, is locally
entangled with the qubit A according to
the transformation 10041004, — \O)AI+}A,
and 11),10)4, = 11) ] )A

log,4(1 = F)

-5

1 N 30
Fig. 1. Plot of the logarithm of the mean value of

1 — F, as function of the number of steps N for
7, =0.9,08, and07.

2)' The qubit A, is transmitted to the
auxiliary qubit B, according to the effec-
tive channel of Eq. 4. Then the qubit A, is
measured in the 1*), basis. If the result
is |— )A , one applies the unitary operation
)5, = —I1)p,. Then one applies the
transformation |1>B\1>B — WI)BII)B
The state after the transmission will be

1M = 1R)Ap(10)5,50 + 11)5,8)IEz™)

+ ‘W>AB(|O>BZSO |1>87 |EW<N> (9)

3) The auxiliary qubit B, is measured. If
the outcome is |+)B , the state becomes Eq.
8 with
1
7 (So = SDIEgw™)

‘ERVW(N+1)> == (IOa)

1
Egw™ 1) = 7 (So ¥ SDIEgw™)  (10b)
respectively. We will denote the probability
of these outcomes by P..

We analyze how the fidelity changes
after each step, for which we need to eval-

uate P_. To this end we define

2

1
E (S0 + S)IE)

T =

B (1)

This parameter gives the probability that,
starting from a perfect EPR pair, after one
step we obtain the outcome [*); . To cal-
culate ., one needs to know the specific
form of the operators and states at all times.
We will estimate the change in the fidelity
by assuming that . does not depend on
IE). Using the definition of Eq. 11, we have
P, ==, Fy+ w_(1 — Fy). Then, depend-
ing on the outcome of the measurement
|%)5, the new fidelity is

TrtFN
TTiFN + ’ﬂ':(l - FN)

(12)

Fyer =

respectively. For t, > m_, the outcome
I+)p, increases the fidelity and occurs with
a higher probability. Because the decrease
in fidelity after a |—); measurement is
compensated for by a subsequent H—)B
measurement, the protocol consists of a ran-
dom walk along a set of particular values of
F, where it is more likely to go up than to go
down, thus achieving F T 1 asymptotically.
The process depends only on the value of
7, which characterizes the effective chan-
nel; a good channel has a 7w, = 1 (for the
stationary channel, m, = 1).

We have simulated the improvement of
the fidelity for several values of the prob-
ability . In Fig. 1, we have plotted the
logarithm of the mean value of 1 — Fy; as
a function of the number of steps N for 7,
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= 0.9, 0.8, and 0.7. For example, we oh-
tain F = 1 — 1077 after N = 12 steps for
. = 0.9. For general channels the fidel-
ity approaches F ~ 1 — 7N with N the
number of steps. We c¢mphasize that for
m, = | we have a stationary channel. In
this case, we obtain F, = 1 in a single step.

For a “good” standard channel (see Eq.
3), Ty is close to T. As a consequence of
our reduction procedure, this implies that
So = §, and therefore m, =1, and 7_ <
. We emphasize that the reverse state-
ment is not truc; namely, one can have S,
= §, but a “bad” standard channel. Con-
sider, for example, a very simple toy model
in which the environment is a qubit in the
initial state 10), and with Ty, = L and T, =
o With the classical definition of a chan-
nel, one can easily show that this channel
cannot produce entanglement; suppose
that Alice has an entangled state of two
qubits A and A,, 1),10) 4 + IB),11)4,
and sends the second qubit to the qubit
B of Bob via such a channcl. The state after
this transmission will be a mixed state
foey ((afl0) 501 + (B J(BII1)s(1) and there-
fore is not entangled. However, for this
channel §; = §, = o, and therefore one
can establish an EPR pair with the proce-
dure introduced above. By twice using the
channel as we proposed, the state of the
environment after hoth transmission factor-
izes out, and therefore entanglement can be
produced. When S, = S, then w_ « ||(S, —
SHE)? =~ 0, which is due to quantum
interference between the first and second
transmission, using the reduction scheme of
Eq. 4.

We have defined a photonic channel
where [0) is assigned to sending no photon
and 11) is assigned to sending one photon.
Using local quantum computing with three
and two auxiliary atoms in the first and
second node, we have reduced it to an
absorption-free channel. We have proposed
a scheme based on this channel that itera-
tively improves the fideliry of distant EPR
pairs, using quantum interference between
two transmissions. For a stationary channel,
one obtains a pure EPR pair in a single step.
For a general channel, the fidelity ap-
proaches 1 exponentially with the number
of steps.
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A Laser Ablation Method for the Synthesis of
Crystalline Semiconductor Nanowires

Alfredo M. Morales and Charles M. Lieber*

A method combining laser ablation cluster formation and vapor-liquid-solid ( VLS) growth
was developed for the synthesis of semiconductor nanowires. In this process, laser
ablation was used to prepare nanometer-diameter catalyst clusters that define the size
of wires produced by VLS growth. This approach was used to prepare bulk quantities
of uniform single-crystal silicon and germanium nanowires with diameters of 6 to 20 and
3 to 9 nanometers, respectively, and lengths ranging from 1 to 30 micrometers. Studies
carried out with different conditions and catalyst materials confirmed the central details
ofthe growth mechanism and suggest that well-established phase diagrams can be used
to predict rationally catalyst materials and growth conditions for the preparation of

nanowires.

One—dimensional (1D) structures with
nanometer diameters, such as nanotubes and
nanowires, have great potential for testing
and understanding fundamental concepts
about the roles of dimensionality and size in,
for example, optical, electrical, and mechan-
ical properties and for applications ranging
from probe microscopy tips to interconnec-
tions in nanoelectronics (1). The synthesis
of crystalline semiconductor nanowires, such
as Si and Ge (2), holds considerable techno-
logical promise for device applications and
for improving the optical properties of these
indirect gap marerials but has been difficule
to achieve. Several successful rourtes for the
synthesis of carbon nanotubes are known
(3), but the different bonding arrangement
within these nanotubes and the different
chemistry of carbon compared with Si and
Ge would require an alternative approach for
controlling the formation of nanowires from
gas-phase  reactants. Template-mediated
methods that use zeolites, membranes, or
nanotubes (4) can control growth but usual-
ly form polyerystalline materials.

An approach that does form crystalline
wirelike structures is VLS growth (5, 6), in
which a liquid metal cluster or catalyst acts
as the cnergetically favored site for absorp-
tion of gas-phase reactants. The cluster su-
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persaturates and grows a 1D structure of the
material; the lower limit of the diameter is
generally >0.1 pm and is limited by the
minimum diameter of the liquid metal cata-
lysts that can be achieved under equilibrium
conditions (6). A VLS method has been
used to grow Si nanowires by confinement of
Au metal on a surface (7, 8), although the
smallest diameters (20 to 100 nm) of defect-
free nanowires are still relatively large. Re-
cently, Buhro and co-workers have reported
a promising solution-liquid-solid (SLS) syn-
thesis of 10- to 100-nm-diameter I111-V semi-
conductors (9). A potential limitation of the
SLS approach, however, is the requirement
of a catalyst that melts below the solvent
boiling point.

We report an approach to the synthesis
of single-crystal nanowires that exploits la-
ser ablation to prepare nanometer-diameter
catalyst clusters that subsequently define
the size of wires produced by a VLS mech-
anism. This approach to generating nano-
meter-diameter clusters is understood from
previous studies (10, 11), and it overcomes
the limitation of equilibrium cluster sizes in
determining minimum wire diameters. We
demonstrated this method with the synthe-
sis of single-crystal Si and Ge nanowires
with diameters as small as 6 and 3 nm,
respectively, and lengths >1 pwm. Because
equilibrium phase diagrams can be used to
rationally choose caralyst materials and
growth conditions (6) and laser ablation
can be used to generate nanometer-sized
clusters of virtually any material, we believe
that our approach could be adapted for
preparing nanowires of numerous materials.

SCIENCE » VOL. 279 « 9 JANUARY 1998 = www.sciencemag.org



