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Change in Chemoattractant Responsiveness of
Developing Axons at an Intermediate Target

Ryuichi Shirasaki,” Ryuta Katsumata, Fujio Murakami

Developing axons reach their final targets as a result of a series of axonal projections to
successive intermediate targets. Long-range chemoattraction by intermediate targets
plays a key role in this process. Growing axons, however, do not stall at the intermediate
targets, where the chemoattractant concentration is expected to be maximal. Commis-
sural axons in the metencephalon, initially attracted by a chemoattractant released from
the floor plate, were shown to lose responsiveness to the chemoattractant when they
crossed the floor plate in vitro. Such changes in axon responsiveness to chemoattractants
may enable developing axons to continue to navigate toward their final destinations.

In the developing nervous system, axons
navigate considerable distances toward their
final targets in a highly stereotyped and di-
rected manner. This process is achieved by a
series of axonal projections to successive in-
termediate targets under the influence of local
guidance cues (I). Accumulating evidence
has indicated the importance of long-range
chemoattraction in guiding developing axons
not only to final (2) but also to intermediate
targets (3—10). Commissural axons originat-
ing from the alar plate of the vertebrate cen-
tral nervous system, for example, initially
grow ventrally, attracted by a diffusible che-
motropic molecule secreted from the ventral
midline floor plate (3-9), an intermediate
target of these axons (6, 11). These axons,
however, grow past the floor plate to extend
contralaterally. Since the first demonstration
of the existence of the floor plate—derived
chemoattractant (3), an intriguing question
has been why growing axons do not stall at
their intermediate targets, where the che-
moattractant concentration is expected to be
maximal. Here, we provide evidence for a
change in the chemoattractant responsiveness
of growing axons during their growth across
an intermediate target.

Metencephalon commissural axons, which
originate from the cerebellar plate (CP) of the
rat embryo, initially grow circumferentially
toward floor plate cells at the ventral midline
of the metencephalon (6). In vitro studies
have suggested that these commissural axons
(referred to hereafter as CP axons) are guided
toward the midline by a diffusible chemoat-
tractant released from floor plate cells (6, 7,
9). Here, we used an in vitro preparation that
reproduces the crossing of the midline floor
plate by CP axons to examine possible chang-
es in the chemoattractant responsiveness of
CP axons when they cross the floor plate (12).
When a strip of the rostral metencephalon
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that included the entire circumferential tra-
jectory of CP axons (Fig. 1A) was cultured
alone in collagen gel, axons originating from
the CP grew across the midline floor plate to
extend contralaterally (n = 16) (Fig. 1B)
(13). We next tested whether CP axons, after
they have crossed the floor plate, are attracted
by an ectopic floor plate explant. We juxta-
posed a floor plate explant to the metence-
phalic strip on one side (Fig. 1A) and exam-
ined the behavior of CP axons by implant-
ing the fluorescent tracer 1,1’-dioctadecyl-
3,3,3',3'-tetramethylindocarbocyanine  per-
chlorate (Dil) into the CP contralateral to the
explant. Under such conditions, CP axons
that had crossed the midline floor plate did
not show directed growth toward the ectopic
floor plate explant (Fig. 1C). To compare
directly the behavior of CP axons extending
from both sides, we implanted Dil crys-
tals into the contralateral CP and 3,3'-di-
octadecyloxacarbocyanine perchlorate (DiO)
crystals into the ipsilateral CP of the same
strip preparations (Fig. 1D). Although DiO-
labeled CP axons that had not crossed the
midline floor plate showed directed growth
toward the ectopic explant, Dil-labeled axons
that had crossed showed no sign of directed
growth (Fig. 1, D and E).

Because implantation of Dil or DiO into
the CP might also label axonal populations
other than those from commissural neurons,
such as longitudinally growing axons (Fig.
1C) (6), we next assessed chemoattraction of
CP axons by labeling them with a molecular
marker for commissural axons (14). Commis-
sural axons at all axial levels from the spinal
cord to the mesencephalon express TAG-1,
an axonal surface glycoprotein, during their
circumferential growth until they reach the
floor plate in vivo (9, 15). Moreover, TAG-
1-positive (TAG-1") commissural axons in-
cluding CP axons are attracted by the floor
plate in vitro (3, 9). We found that most
TAG-1* CP axons in control strip prepara-
tions grew straight along the circumferential
axis (n = 15) (Fig. 1F), although some TAG-
1" CP axons near the cut edges of the prep-
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arations spontaneously exited the prepara-
tions, deflected from their circumferential tra-
jectory. However, TAG-1" CP axons at a
distance of >0.16 mm away from the cut

Fig. 1. Loss of CP axon A
responsiveness to a floor
plate (FP)-derived che-
moattractant when the

edges were never observed to exit from con-
trol strip preparations. Thus, we judged CP
axons to be attracted by an ectopic floor plate
explant if CP axons at a distance of >0.16

Ectopic FP
( explant

CP axons cross the floor
plate. (A) (Left} A dia-
grammatical view of the
coronal plane of the neu-
ral tube with the trajecto-
ry of CP axons. (Center)
Flat, whole-mount prep-
aration that was ob-
tained by cutting the dor-
sal midline of the neural
tube. (Right) A metence-
phalic strip preparation
of E13 rat brain including
the circumferential tra-
jectory of CP axons was
further dissected from
the whole-mount prepa-
ration as represented in
the center diagram. An
ectopic floor plate (eFP)
explant was placed on
one side of the prepara-
tion. (B) Fluorescent view
of Dil-labeled CP axons
in a metencephalic strip
preparation that had
been cultured for 2 days.
(C) Fluorescent micro-
graph of Dil-labeled CP
axons in a strip prepara-
tion with an ectopic floor

plate explant on one side. (D and E) Different behaviors of CP axons in the same preparation with an
ectopic floor plate explant on one side (lower right). DiO crystals were implanted into one side (right) and
Dil crystals into the other side (left). (E) is a higher magnification view of (D). (F) Immunofluorescence
micrograph of a strip preparation after staining with antibody to TAG-1. (G) In the presence of an ectopic
floor plate explant, ipsilateral TAG-1* CP axons are deflected toward the explant. Asterisks in (B) and (C)
indicate Dil injection sites, and arrows indicate the ventral midline floor plate (B to D, F, and G). Scale bar,

250 wum (B to D, F, and G) and 100 um (E).

Fig. 2. Abolishment of chemoattrac-
tant responsiveness of CP axons by
the midline floor plate. (A and C) Di-
agrams showing experimental ma-
nipulations. The hatched regions
were removed from the strip prepa-
ration, and the remaining explants
were put together to fuse the cut
aspects of the preparation. (B) Fluo-
rescent micrograph of a culture
preparation after the experimental
manipulation shown in (A), demon-
strating that Dil-labeled CP axons
growing into the contralateral part
are attracted by an ectopic floor
plate explant. Asterisks indicate Dil
injection sites. (D) When a ventral re-
gion excluding the midline floor plate
is removed, Dil-labeled CP axons,
once they cross the midiine floor
plate, grow circumferentially on the

contralateral side, showing no sign of being attracted by an ectopic floor plate explant. Scale bar, 250 um.
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mm away from the cut edge facing the explant
showed turning toward and penetration into
the explant. We found that, although TAG-
1* CP axons even at a distance of 0.56 = 0.02
mm (mean * SEM, n = 17) away from the
explant showed turning toward the ipsilater-
ally placed explant (Fig. 1G and Table 1),
Dil-labeled CP axons, once they had crossed
the floor plate, were not attracted by the
explant (Table 1) (16). Thus, CP axons,
which are attracted by the chemoattractant
until they reach the floor plate, lack respon-
siveness to it after they cross the floor plate.

At least two possible mechanisms can be
considered regarding this change in growth
cone responsiveness: one is a cell-autonomous
loss of responsiveness at the floor plate, and
the other is a change caused by an interaction
of commissural axons with floor plate cells. If
the latter is the case, one would predict that
the growth cones extending into the con-
tralateral side without encountering the mid-
line floor plate should retain responsiveness to
the chemoattractant. We found that when a
ventral region including the floor plate was
surgically removed from the strip preparation
(Fig. 2A), CP axons growing into the con-
tralateral part showed directed growth toward
the ectopic floor plate explant (Fig. 2B and
Table 1). In contrast, when a ventral region
that did not contain the floor plate was re-
moved (Fig. 2C), CP axons, once they had
crossed the midline floor plate, grew circum-
ferentially without being attracted by the ec-
topic floor plate explant (Fig. 2D and Table
1). These results support the view that the
growth cone encounter with floor plate cells
abolishes its responsiveness to the floor plate—
derived chemoattractant.

We next tested whether CP axons, after
crossing the floor plate, continue to have
responsiveness to netrin-1, a laminin-related

Table 1. Chemoattraction of CP axons in meten-
cephalic strip preparations. Culture preparations
were scored as positive if they contained any CP
axons that were qualified as “attraction” by the
criteria described in the text. FP, floor plate.

Fraction of
preparations in
which attraction
of CP axons was

Explant apposed
to one side
of strip preparation

observed
FP explant* 17/17
FP explantt 0/20%
FP explantf (preparation 12/12
without FP)
FP explantt {shortcut 0/20
preparation)
Netrin-1-secreting aggregate* 12/12
Netrin-1-secreting aggregatet 0/12

“Effect on ipsilateral CP axons. tEffect on contralat-
eral CP axons. fin 7 out of 20 preparations, CP
axons extending from both sides were labeled in the
same preparations.
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Fig. 3. Loss of CP axon
responsiveness to ne-
trin-1 when the CP ax-
ons cross the floor plate.
A netrin-1-secreting cell
aggregate was placed
on one side of the strip
preparation. (A) Immu-
nofluorescence  micro-
graph  showing that

TAG-1* CP axons are attracted by ipsilaterally placed aggregates of netrin-1-secreting cells (Net). (B)
Dil-tabeled CP axons are not attracted by netrin-1-secreting cell aggregates after they cross the floor
plate. Asterisks indicate Dil injection sites. Scale bar, 250 um.

diffusible protein secreted by floor plate cells
(5, 17). Netrin-1 can attract commissural ax-
ons at all axial levels from the spinal cord to
the mesencephalon in vitro (5, 6, 9). We
found that CP axons, which are attracted by
aggregates of heterologous cells secreting ne-
trin-1 (Fig. 3A and Table 1) (18), were not
attracted by the aggregates after they had
crossed the floor plate (Fig. 3B and Table 1)
(19), indicating that CP axons lose respon-
siveness to netrin-1 during their growth across
the floor plate (20).

Our results show that floor plate chemoat-
traction of commissural axons is effective only
until they arrive at the floor plate. Although
it remains unknown how modification of
growth cone responsiveness to the chemoat-
tractant is achieved, one possible mechanism
is that the interaction of commissural axons
with floor plate cells directly changes
the chemoattractant responsiveness of the ax-
ons by modifying chemoattractant-receptor
mechanisms locally in the growth cones. Al-
ternatively, the modification might be medi-
ated by changes in transcription of the recep-
tor or one or more receptor-related molecules.
In any case, receptor mechanisms mediated
by netrin-1 may in some way be involved.
Deleted in Colorectal Cancer (DCC) is a
receptor or a component of a receptor that
mediates the effect of netrin-1 on spinal com-
missural axons (21, 22) and is also expressed
on CP axons during their growth toward the
floor plate in vivo (23). Thus, down-regula-
tion of DCC expression at the floor plate may
underlie the loss of the chemoattractant re-
sponsiveness. However, DCC appears to be
expressed on commissural axons both as they
project toward the floor plate and after they
cross the floor plate in the developing rat
spinal cord (21), suggesting that another as
yet unidentified component of the netrin-1
receptor may be involved (9, 21, 24). It is also
possible that the transfer of proteins from
midline cells to crossing axons at the midline
(25) is in some way involved in the regula-
tion of the chemoattractant responsiveness of
the axons.

After they cross the floor plate, commis-
sural axons at all axial levels from the spinal
cord to the mesencephalon abruptly change
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their growth direction to extend longitudi-
nally (6, 11, 26). Although the molecular
mechanisms subserving such a change in
growth direction remain unknown, changes
in growth cone responsiveness to guidance
cues as demonstrated here might explain why
commissural axons can grow along the longi-
tudinal axis only on the contralateral side,
despite the existence of identical ipsilateral
cues.

In conclusion, loss of chemoattractant re-
sponsiveness of developing axons at interme-
diate targets as described here may contribute
to their leaving the intermediate targets. In
addition, encounters with their intermediate
targets might also cause sensitization of grow-
ing axons to subsequently encountered cues
that guide them to their final destinations.
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