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Fig. 5. Size distribution of nascent strands in 
yeast. (p)ppRNA-DNA chains from RI DNA and 
dsDNA and from total nuclear yeast DNA were 
radiolabeled with [W~~P]GTP with the use of vac- 
cinia guanylyltransferase (19). The label was re- 
moved by alkali treatment, indicating that the label 
was on RNA primers (14). The double-stranded 
fraction contains "full-length" Okazaki fragments 
of 125 nt that are not efficiently bound by BND 
cellulose. "Full-length" Okazaki fragments of 125 
nt are absent in RI DNA, as they are already pro- 
cessed or ligated to leading strands. Lane M: Mo- 
lecular size marker (in bases) is OX1 74 RF DNAcut 
with Hae I l l .  
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between B1 and B2, do not affect replication Modif icaf ion of the NADH of the lsoniazid Target 
efficiency in vivo (3). This suggests that the 
transition region itself has no cis-regulatory (In h A) from Mycobacterium tuberculosis 
function. 

The initiation points we detected in the 
transition region coincide with deoxyribo- 
nuclease I-hypersensitive sites that are ex- 
posed on each strand of ARSl upon ORC 
binding in vivo and in vitro (4) (Fig. 3). 
The most pronounced hypersensitive site in 
element B1 (4) is at the transition point on 
the top strand. The coincidence of ORC- 
induced hypersensitive sites with DNA ini- 
tiation sites suggests that ORC defines the 
transition region. 
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The preferred antitubercular drug isoniazid specifically targets a long-chain enoyl-acyl 
carrier protein reductase (InhA), an enzyme essential for mycolic acid biosynthesis in 
Mycobacterium tuberculosis. Despite the widespread use of this drug for more than 40 
years, its precise mode of action has remained obscure. Data from x-ray crystallography 
and mass spectrometry reveal that the mechanism of isoniazid action against lnhA is 
covalent attachment of the activated form of the drug to the nicotinamide ring of nic- 
otinamide adenine dinucleotide bound within the active site of InhA. 

Mycobacterium tuberculosis is particularly 
susceptible to isoniazid [isonicotinic acid hy- 
drazide (INH)], the most widely used of all 
antitubercular drugs ( I  ). Although isoniazid- 
based treatment regimens have been avail- 
able since the 1950s, M ,  tuberculosis remains 
the leading cause of death worldwide from 
an infectious agent (2). Tuberculosis is now 
a disease associated with poverty and with 

acquired immunodeficiency syndrome 
(AIDS); the greatest impact is experienced 
in underdeveloped nations and in centers of 
urban decay (3). In addition, the incidence 
of incurable cases due to multidrug-resistant 
mutants is on the rise. These trends have 
generated renewed interest in elucidating 
the molecular mechanisms of action of well- 
established antitubercular drugs as an aid in 
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Fig. 1. A portion of the crystallographic model of 
the isonicotinic acyl-NADH superimposed onto 
the final 2F, - F, electron density map contoured 
at 1 a. Carbon atoms are green, oxygen atoms are 
red, nitrogen atoms are blue, and phosphorous 
atoms are magenta. Starting from the lower right, 
the two phosphates of NADH are in view. Moving 
toward the upper left is the nicotinamide ribose 
and nicotinamide ring of NADH. In the top left is 
the fragment derived from isoniazid, which retains 
a pyridine ring and a carbonyl group, referred to 
here as an isonicotinic acyl group. The isonicotinic 
acyl group is attached through its carbonyl carbon 
to the carbon at position four of the nicotinamide 
ring of NADH. The carbon at position four of the 
nicotinamide ring of the isonicotinic acyl-NADH 
inhibitor is tetrahedral and retains one hydrogen. 
Produced with the program 0 (32). 

developing new therapeutics (4.) 
The inhA gene from Mycobacterium smeg- 

matis, Mycobacterium awium, ~~cobacteriuk 
bopris, and M. tuberculosis confers co-resis- 
tance to both isoniazid and ethion- 
amide when transformed on a multicopy 
plasmid into M. smegmatis (5). In addition, a 
suontaneous laboratow-derived mutation. 
which results in a single amino acid substi- 
tution [Ser94 to Ala (S94A)l in the M. smeg- 
matis and the M. bovis (100% identical to M. 
tuberculosis) genes. is sufficient to confer co- . -  . 
resistance to both isoniazid and ethionamide 
in M. smegmatis by allele exchange. Subse- 
quent studies revealed that InhA is an enoyl- 
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Fig. 2. Mass spectra showing that the inhibitor bound to lnhA is a compound with an apparent mass of 
770 daltons, which is in agreement with the chemical structure of isonicotinic acyl-NADH. (A) lnhA alone 
shows no significant components within the masskharge (mlz) range of 650 to 850. (B) lnhA in the 
presence of NADH shows several components related to NADH. NADH displays a peak at 666 ([M + 
HI+). Also present are adducts with one sodium ion (mlz = 688), with one potassium ion (m/z = 704), 
and with one sodium and one potassium ion (mlz = 726). Adducts with two sodium ions (mlz = 71 0) or 
two potassium ions (mlz = 742) are also present at low levels. (C) Isoniazid-inhibited lnhA shows the 
absence of NADH-associated peaks and the presence of a new peak at mlz = 771 ([M + HI+) 
corresponding to isonicotinic acyl-NADH. Also present are adducts with one sodium ion (m/z = 793), 
with one potassium ion (m/z = 809), and with one sodium ion and one potassium ion (m/z = 831). 
Adducts with two sodium ions (m/z = 81 5) or two potassium ions ( d z  = 847) are also present at low 
levels. Analysis of the m/z peaks with Finnigan Zoomscan confirmed that they are all singly charged 
species. 

acyl carrier protein (ACP) reductase (6). 
Enoyl-ACP reductases catalyze the nicotin- 
amide adenine dinucleotide (NADH)-de- 
pendent reduction of the double bond at 
position two of a growing fatty acid chain 
linked to ACP, an enzymatic activity com- 
mon to all known fattv acid biosvnthetic 
pathways. InhA preferentially reduces long- 
chain substrates (those containine 16 or " 
more carbon atoms). Mycobacteria utilize 
the uroducts of InhA catalvsis to create mv- 
colic acids, very long chain (C40 to C6J 
a-branched fatty acids, which are important 
components of mycobacterial cell walls (7). 
In addition to the genetic data, the fact that 
isoniazid inhibits mycolic acid biosynthesis 
(8) and that mycolic acid biosynthesis pro- 
ceeds normally in cell-free extracts of isoni- 
azid-resistant M. smegmatis, due to multicopy 
plasmid expression of wild-type InhA or 
genomic expression of the S94A mutant (5), 
provides compelling evidence that InhA is 
the drug target for both isoniazid and ethio- 
namide in mvcobacteria. 

However, isoniazid itself does not directly 

interact with InhA. Several lines of evidence 
support the theory that, to inhibit InhA, iso- 
niazid reauires conversion to an activated 
form of the drug and that a catalase-peroxi- 
dase (KatG) participates in isoniazid activa- 
tion (9): (i) isoniazid, NADH (1 O), Mn2+ 
ions, and oxygen (1 1) are all required for 
InhA inhibition; (ii) KatG is an efficient 
catalyst for oxidation of MnZ+ ions (MnZ+ + 
Mn3+) (12) and the addition of KatG accel- 
erates isoniazid-dependent inhibition of InhA 
(1 3); (iii) deletions or mutations in the KatG 
gene are the single largest determinant of 
isoniazid resistance in clinical isolates (14) 
and transformation of the KatG gene into 
isoniazid-resistant M. tuberculosis restores iso- 
niazid sensitivity (15). It has been proposed 
that the activated form of isoniazid is an 
intermediate in the formation of isonicotinic 
acid, isonicotinamide, and pyridine-4-carbox- 
aldehyde, the products of isoniazid oxidation, 
none of which inhibits InhA (16). 

About 25% of the clinical isolates of 
isoniazid-resistant M. tuberculosis contain 
mutations within the promoter or structural 
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regions of the inhA gene, and n o  inhA mu- 
tations have been identified in isoniazid- 
sensitive isolates (14). Four different clini- 
cal isolate mutations (at residues 16, 21, 78, 
and 95) result in single amino acid substi- 
tutions within or near the NADH binding 
region of InhA (1 7). The location o f  the 
S94A mutation is also within the NADH 
binding region. As  demonstrated by x-ray 
crystallography, the S94A mutant displays a 
reduced hydrogen bonding pattern between 
NADH and the enzyme ( la) ,  resulting in 
an increased Michaelis constant (K,) for 
NADH (6). Isoniazid-dependent inhibition 
of wild-type InhA requires the presence of 

NADH, and inhibition o f  the S94A mutant 
occurs only when the concentration of 
NADH is increased (lo), which implies 
that there is a correlation between the abil- 
i ty  of the enzyme to bind NADH and to 
become inhibited bv activated isoniazid. 
Furthermore, acyl-ACP substrates can pre- 
vent isoniazid-de~endent inhibition of 
InhA, which suggests that activated isoni- 
azid interacts wi th the substrate binding 
region of InhA ( 13). 

Crystals produced from InhA inhibited 
by isoniazid (1 9) were isomorphous to those 
of the native enzyme (18) and were used t~ 

collect an x-ray diffraction data set to 2.7 A 

Fig. 3. Proposed pathway for formation of the lsoniazid 
isonicotinic acyl-NADH inhibitor of InhA, Two pas- ~ s ~ n i ~ ~ t i n i c  acyl (isonicotinic acid lsonicotinic aCyl 

anlon hydrazide) rad~cal 
sible scenarios are shown, in which an activated 
form of isoniazid (isonicotinic acyl anion or radical) 
covalently attaches to a form of NADH (NAD+ or 
NAD. radical) within the active site of InhA, while 
retaining a tetrahedral carbon at position four of 
the nicotinamide ring. Of the two scenarios, we + + 
favor the free radical pathway because isoniazid- 

NAD+ NADH NAD'radical 
dependent inhibition of InhAoccurs at afaster rate 
with NADH than with NAD+ (13). Whether lnhA 
catalyzes NAD radical formation is not clear, be- 
cause Mn2+ ions are known to facilitate this pro- 
cess (28). In addition, it is likely that Mn3+ ions I I I 
facilitate the formation of isonicotinic acyl radicals 
and KatG participates in isoniazid activation by \\, ,' 
increasing the rate of the conversion of Mn2+ to Isonicolinic acyl-NADH,,,ithA 
Mn3+ ions (1 1, 12). There are reports in the litera- 
ture in which certain combinations, such as isoni- 
azid and Mn2+ ions (29) as well as isoniazid and 
peroxidase enzymes (30), are known to generate 
free radical species. Furthermore, the final prod- 
ucts of the KatG oxidation of isoniazid are likely to 
be formed through an isonicotinic acyl radical in- 
termediate (16) and spin-trapping techniques 

/ 

have identified the isonicotinic acyl radical as one of the products of peroxidase-catalyzed oxidation of 
isoniazid (31). Produced with chem-D draw (32). 

Fig. 4. Molecular~contacts between 
isonicotinic acyl-NADH and the ac- 
tive site of InhA. The isonicotinic 
acyl group derived from isoniazid is 
red, the NADH portion of the analog 
is blue, the side chains of lnhA are 
green, and Serg4, the residue that 
causes isoniazid resistance when 
converted into Ala, is magenta. 
Numbers represent the distance in 
angstroms between selected at- 
oms. The orientation of the isonico- 
tinic acyl group with respect to the 
NADH portion of the inhibitor is 
such that its carbonyl oxygen is po- M . 1  
sitioned about halfway between 
two hydrogen bond donors, the 
amide nitrogen of the nicotinamide 
ring, and the 2'-hydroxyl oxygen of 
the nicotinamide ribose ring. In ad- 
dition, the nitrogen atom of the 
isonicotinic acyl group is within hy- 
drogen-bonding distance of a bur- 
ied water molecule held by the side chain of Met155. The pyridine ring of the isonicotinic acyl group is 
surrounded by hydrophobic residues, which include Phe149, Glylg2, Prolg3, Leu218, Tyr15%, and TrpZz2. 

resolution (20). The resulting difference 
Fourier (F, - F,) electron density map 
showed that the activated form of isoniazid 
was covalently linked to the NADH within 
the active site of InhA (21). The modified 
NADH consists of an isonicotinic-acyl group 
from isoniazid attached through its carbonyl 
carbon to the carbon at position four of the 
nicotinamide ring (Fig. 1). The isonicotinic- 
acyl group replaces the 4S (and not the 4R) 
hydrogen of NADH, which is the same po- 
sition in NADH involved in the hydride 
transfer that occurs during reduction of 
enoyl-ACP substrates (6). Furthermore, the 
covalent attachment was verified by mass 
spectrometry (22). The mass spectrum of 
isoniazid-inhibited InhA reflects the Dres- 
ence of a compound wi th a molecular mass 
of 770 daltons, which is in agreement wi th 
the crystallographic model for the isonico- 
tinic-acyl-NADH (Fig. 2). 

Earlier proposals have suggested that iso- 
niazid can be activated to either an isonico- 
tinic acyl anion (23) or an isonicotinic acyl 
radical (16). The x-ray crystallography and 
mass spectrometry results show that the car- 
bon at position four of the nicotinamide ring 
of the isonicotinic acyl-NADH is tetrahedral 
and retains one hydrogen. This suggests that 
formation of the isonicotinic acyl-NADH 
consists of addition of either an isonicotinic 
acyl anion to NAD+ or an isonicotinic acyl 
radical to an NAD ' radical (Fig. 3). Further- 
more. isonicotinic acvl-NADH formation 
occurs within the activk site of InhA (not in 

Fig. 5. Superposition of the active sites of lnhA 
with bound NADH (yellow) and with bound isoni- 
cotinic acyl-NADH (red). The only conformation- 
al difference between the active sites is displace- 
ment of the side chain of Phe149. In the native 
enzyme, NADH binds at the bottom of a large 
open cavity, and the side chain of Phe149 lies 
immediately above the nicotinamide ring, ap- 
pearing to protect the reactive portion of NADH 
from solvent. In the presence of the isonicotinic 
acyl group, the side chain of Phe149 has rotated 
away from the nicotinamide ring, creating space 
for the isonicotinic acyl group. In addition, the 
side chain of Phe149 is now oriented adjacent to 
the pyridine ring of the isonicotinic acyl group, 
allowing it to participate in an aromatic ring- 
stacking interaction. Produced with the program 
Insight (32). 
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solution or within KatG) because an incu- 
bation mixture containing all the reaction 

u 

components, except InhA, does not produce 
a detectable amount of isonicotinic acyl- 
NADH (24). 

The crvstal structure of isoniazid-inhib- 
ited 1nhA'provides an explanation for the 
exquisite specificity of activated isoniazid 
for InhA. The location and orientation of 
the isonicotinic acyl group are cotnplernen- 
tary to those of the surrounding InhA side 
chains, which create a specific binding 
pocket for the isonicotinic acyl group (Fig. 
4). In addition, the size and shape of the 
pocket could accomtnodate the isoniazid 
analog ethionamide. Although KatG is not 
the activator of ethiona~nide 11 3 ) .  ethio- , , ,  

nalnide also requires activation and, by 
analogy to isoniazid, we propose that acti- 
vated ethionatnide inhibits InhA by be- 
coming covalently attached to position four 
of the nicotinamide ring of NADH by a 
2-ethyl isonicotinic thioacyl group. 

Comparison of the crystal structures of 
InhA with bound NADH (18) and with 
bound isonicotinic acyl-NADH reveals that 
the only significant difference in the pro- 
tein is location of the side chain of Phe"? 
(Fig, 5). When isonicotinic acyl-NADH is 
bound, the side chain of PheI4? has rotated 
-90" and fortns an aromatic ring-stacking 
interaction with the pyridine ring of the 
isonicotinic acyl group. Although a binding 
conscant that describes the affinity of InhA 

for isonicotinic acyl-NADH has not been 
determined, this new structural arrange- 
ment would increase the affinity over 
NADH alone. Similarly, mutations with 
decreased affinity for NADH (such as 
S94A) are likely to possess decreased affin- 
ity for isonicotinic acyl-NADH. 

The existence of the isonicotinic acyl- 
NADH inhibitor, the affinity of InhA for 
NADH, and the order in which NADH and 
acyl-ACP substrates bind InhA now become 
critical to explaining InhA-related isoniazid 
susceptibility and resistance in M. tuberculo- 
sis. Kinetic isotope analysis of InhA has dem- 
onstrated that the binding sequence of 
NADH and long-chain acyl-ACP substrates 
is not strictly ordered, but there is a prefer- 
ence for NADH binding first (6).  This pref- 
erence would leave most of the wild-type 
enzyme in the NADH-bound form, available 
for attack by activated isoniazid. If wild-type 
InhA cannot release significant amounts of 
isonicotinic acyl-NADH, this will effectively 
create permanent inhibition of the enzyme 
and prevent mycolic acid biosynthesis. In 
contrast, the decreased affinity of the S94A 
mutant for NADH would promote acyl- 
ACP substrates binding before NADH, 
thereby protecting most of the enzyme fro111 
activated isoniazid. When the ison~cotinic 
acyl-NADH is fortned on the mutant en- 
zyme, the lowered affinity for NADH pro- 
tnotes release of isonicotillic acyl-NADH, 
allowing nortnal substrate catalysis to pro- 

Table 1. Dgta collection ?nd model refinement statistics: space group P6,22; lattice constants, a = b 
= 100.53 A, c = 138.96 A, a: = p = 90.0°, and y = 120.0"; rms, root mean square. Completeness = 

(number of Foizsevedinumber of Fexpected) x 100; RSvm = [Z (I - ( / ) ) I  /I(/)) X 100; average 1/01 = 
Z(//u/)inumber of/; Rvaue = [ Z (  Fo,,e,,.e, - Fc,lc,,lated~)/Z(Fo ,,,,, ,,)I X 100; R ,,,, = Rvaue of 10% 
of the data omitted at random. 

Overall H~ghest shell 

Resolution A 
Unique reflections 
Completeness (%) 
R,,, based on I (%) 
Average //u/ 
R value (%) 
Rfree (%I 

Number of 
nonhydrogen 

atoms 

Temperature 
factor (A2) 

Protein main chain 
Protein s~de chain 
sonicotinic acyl-NADH 
Ordered water molecules 

rms deviaton 
from deai 

Bond length (A) 
Bond angles (") 
Dhedral angles (") 
Improper angles (") 

ceed and resulting in isoniazid-resistant tu- 
berculosis. 

The tnechanisnls of drug action and drug 
resistance  resented here for isoniazid are 
quite different from those predicted for iso- 
niazid by analogy to diazabor~ne attachment 

u ,  

to the 2'-hydroxyl oxygen of the nicotin- 
atnide ribose of the NAD+ of the Escherichia 
coli enoyl-ACP reductase (FabI) (25). The 
crystal structure of the complex between 
isonicotinic acyl-NADH and InhA provides 
a basis for the design of agents that inhibit 
InhA without the need for KatG drug acti- 

c7 

vation. The pathway of mycolic acid biosyn- 
thesis is essential to mvcobacteria and there- 
fore InhA is a log~cal choice for the design of 
drugs that control growth of M.  tuberculosis. 
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Ultraviolet-Induced Cell Death Blocked by a 
Selenoprotein from a Human 

Dermatotropic Poxvirus 
Joanna L. Shisler, Tatiana G. Senkevich, Marla J. Berry, 
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Selenium, an essential trace element, is a component of prokaryotic and eukaryotic 
antioxidant proteins. A candidate selenoprotein homologous to glutathione peroxidase 
was deduced from the sequence of molluscum contagiosum, a poxvirus that causes 
persistent skin neoplasms in children and acquired immunodeficiency syndrome (AIDS) 
patients. Selenium was incorporated into this protein during biosynthesis, and a char- 
acteristic stem-loop structure near the end of the messenger RNA was required for 
alternative selenocysteine decoding of a potential UGA stop codon within the open 
reading frame. The selenoprotein protected human keratinocytes against cytotoxic ef- 
fects of ultraviolet irradiation and hydrogen peroxide, providing a mechanism for a virus 
to defend itself against environmental stress. 

T h e  trace element selenium is essential for 
survival, as demonstrated by the  early em- 
bryonic lethality of targeted disruption of the 
selenocysteine (Sec) t R N A  gene ( 1  ). Sever- 
al lines of evidence, mostly based o n  a de- 
crease or increase in dietary selenium, sug- 
gest that selenoproteins have roles in anti- 
oxidant defenses, thyroid function, repro- 
ductive capacity, and protection against 
tumors and virus infections (2 ,  3). Although 
selenoproteins are present in Bacteria, Ar- 
chaea, and Eukarya, heretofore no  viral sel- 
enoprotein has been demonstrated. A recent 
analysis of the D N A  sequence of mol l~~scum 
contagiosum virus (MCV)  revealed an  open 
reading frame (ORF), MC066L, with hornol- 
ogy to human glutathione peroxidase (4), a 
well-characterized selenoenzyrne that reduc- 

es cytotoxic peroxides (2 ,  5). T h e  M C V  
contains more than 150 genes (6) and, like 
other poxviruses, replicates in the cytoplasm 
of infected cells (7). It resides exclusively in 
the huinan epidermis, where it causes persis- 
tent, benign neoplastns in children and es- 
sentially untreatahle opportunistic infections 
in  AIDS patients (8). Apoptosis plays a n  
important role in the biology of the epider- 
mis and tnay provide a mechanism for regres- 
sion of some epidermal neoplasms (9). T h e  
putative M C V  glutathione peroxidase may 
protect infected cells against ultraviolet 
(UV)  irradiation, which is known to induce 
apoptosis through the action of hydrogen 
peroxide and superoxide anions ( 10). 

T h e  MC066L ORF was predicted to en- 
code a selenoprotein because of the presence 
of a potential U G A  stop codon, which could 

J, L. Sh~sler,T. G. Senkevch, B.  Moss, LaboratoryofVral he decoded as Sec, within the region of ho- 
Dseases, Natonal lnsttute of Allergy and lnfectous D s  mology glutathione peroxidase (4). Rec. 
eases, Natonal lnsttutes of Health, 4 Center Drlve, MSC 
0445, Bethesda, MD 20892-0445, USA, ognition . of . the Sec codon is relatively ineffi- 
M, J. Berry Thyrod Dv~son ,  Haward Insttutes of M e d  ciellt and depe~lds on a secondar~? structural 
cine. 77 Avenue LOLIIS Pasteur, Boston, MA 021 15, USA. selenocysteine illsertion sequence (SECIS) el. 
'To whom correspondence should be addressed. ement, which occurs immediately after U G A  

102 SCIENCE VOL 279 2 JANUARY 1998 waw.sclencernag.org 




