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Fig. 5. Size distribution of nascent strands in
yeast. (p)ppRNA-DNA chains from Rl DNA and
dsDNA and from total nuclear yeast DNA were
radiolabeled with [a-32P)GTP with the use of vac-

_ cinia guanylyltransferase (79). The label was re-
moved by alkali treatment, indicating that the label
was on RNA primers (74). The double-stranded
fraction contains “full-length” Okazaki fragments
of 125 nt that are not efficiently bound by BND
cellulose. “Full-length” Okazaki fragments of 125
nt are absent in Rl DNA, as they are already pro-
cessed or ligated to leading strands. Lane M: Mo-
lecular size marker (in bases) is 0X174 RF DNA cut
with Hae Il

ARSI is flanked by the binding site of ORC,
the putative initiator protein, and by ele-
ment B2 (8) (Fig. 3B). Mutations in B2 of
ARSI reduce replication efficiency (3),
whereas mutations in the transition region,
between Bl and B2, do not affect replication
efficiency in vivo (3). This suggests that the
transition region itself has no cis-regulatory
function.

The initiation points we detected in the
transition region coincide with deoxyribo-
nuclease I-hypersensitive sites that are ex-
posed on each strand of ARSI upon ORC
binding in vivo and in vitro (4) (Fig. 3).
The most pronounced hypersensitive site in
element B1 (4) is at the transition point on
the top strand. The coincidence of ORC-
induced hypersensitive sites with DNA ini-
tiation sites suggests that ORC defines the
transition region.
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Modification of the NADH of the Isoniazid Target
(InhA) from Mycobacterium tuberculosis

Denise A. Rozwarski, Gregory A. Grant, Derek H. R. Barton,
William R. Jacobs Jr., James C. Sacchettini*

The preferred antitubercular drug isoniazid specifically targets a long-chain enoyl-acyl
carrier protein reductase (InhA), an enzyme essential for mycolic acid biosynthesis in
Mycobacterium tuberculosis. Despite the widespread use of this drug for more than 40
years, its precise mode of action has remained obscure. Data from x-ray crystallography
and mass spectrometry reveal that the mechanism of isoniazid action against InhA is
covalent attachment of the activated form of the drug to the nicotinamide ring of nic-
otinamide adenine dinucleotide bound within the active site of InhA.

Mycobacterium tuberculosis is particularly
susceptible to isoniazid [isonicotinic acid hy-
drazide (INH)], the most widely used of all
antitubercular drugs (1). Although isoniazid-
based treatment regimens have been avail-
able since the 1950s, M. tuberculosis remains
the leading cause of death worldwide from
an infectious agent (2). Tuberculosis is now
a disease associated with poverty and with

acquired  immunodeficiency  syndrome
(AIDS); the greatest impact is experienced
in underdeveloped nations and in centers of
urban decay (3). In addition, the incidence
of incurable cases due to multidrug-resistant
mutants is on the rise. These trends have
generated renewed interest in elucidating
the molecular mechanisms of action of well-
established antitubercular drugs as an aid in
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Fig. 1. A portion of the crystallographic model of
the isonicotinic acyl-NADH superimposed onto
the final 2F_ - F_ electron density map contoured
at 1¢. Carbon atoms are green, oxygen atoms are
red, nitrogen atoms are blue, and phosphorous
atoms are magenta. Starting from the lower right,
the two phosphates of NADH are in view. Moving
toward the upper left is the nicotinamide ribose
and nicotinamide ring of NADH. In the top left is
the fragment derived from isoniazid, which retains
a pyridine ring and a carbonyl group, referred to
here as an isonicotinic acyl group. The isonicotinic
acyl group is attached through its carbonyl carbon
to the carbon at position four of the nicotinamide
ring of NADH. The carbon at position four of the
nicotinamide ring of the isonicotinic acyl-NADH
inhibitor is tetrahedral and retains one hydrogen.
Produced with the program O (32).

developing new therapeutics (4.)

The inhA gene from Mycobacterium smeg-
matis, Mycobacterium avium, Mycobacterium
bowis, and M. tuberculosis confers co-resis-
tance to both isoniazid and ethion-
amide when transformed on a multicopy
plasmid into M. smegmatis (5). In addition, a
spontaneous laboratory-derived mutation,
which results in a single amino acid substi-
tution [Ser® to Ala (S94A)] in the M. smeg-
matis and the M. bouis (100% identical to M.
tuberculosis) genes, is sufficient to confer co-
resistance to both isoniazid and ethionamide
in M. smegmatis by allele exchange. Subse-
quent studies revealed that InhA is an enoyl-
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Fig. 2. Mass spectra showing that the inhibitor bound to InhA is a compound with an apparent mass of
770 daltons, which is in agreement with the chemical structure of isonicotinic acyl-NADH. (A) InhA alone
shows no significant components within the mass/charge (m/z) range of 650 to 850. (B) InhA in the
presence of NADH shows several components related to NADH. NADH displays a peak at 666 (M +
H]*). Also present are adducts with one sodium ion (m/z = 688), with one potassium ion (m/z = 704),
and with one sodium and one potassium ion (m/z = 726). Adducts with two sodium ions (m/z = 710) or
two potassium ions (m/z = 742) are also present at low levels. (C) Isoniazid-inhibited InhA shows the
absence of NADH-associated peaks and the presence of a new peak at m/z = 771 (M + H]*)
corresponding to isonicotinic acyl-NADH. Also present are adducts with one sodium ion (m/z = 793),
with one potassium ion (m/z = 809), and with one sodium ion and one potassium ion (m/z = 831).
Adducts with two sodium ions (m/z = 815) or two potassium ions {m/z = 847) are also present at low
levels. Analysis of the m/z peaks with Finnigan Zoomscan confirmed that they are all singly charged

species.

acyl carrier protein (ACP) reductase (6).
Enoyl-ACP reductases catalyze the nicotin-
amide adenine dinucleotide (NADH)-de-
pendent reduction of the double bond at
position two of a growing fatty acid chain
linked to ACP, an enzymatic activity com-
mon to all known fatty acid biosynthetic
pathways. InhA preferentially reduces long-
chain substrates (those containing 16 or
more carbon atoms). Mycobacteria utilize
the products of InhA catalysis to create my-
colic acids, very long chain (C, to Cg)
a-branched fatty acids, which are important
components of mycobacterial cell walls (7).
In addition to the genetic data, the fact that
isoniazid inhibits mycolic acid biosynthesis
(8) and that mycolic acid biosynthesis pro-
ceeds normally in cell-free extracts of isoni-
azid-resistant M. smegmatis, due to multicopy
plasmid expression of wild-type InhA or
genomic expression of the S94A mutant (5),
provides compelling evidence that InhA is
the drug target for both isoniazid and ethio-
namide in mycobacteria.

However, isoniazid itself does not directly

interact with InhA. Several lines of evidence
support the theory that, to inhibit InhA, iso-
niazid requires conversion to an activated
form of the drug and that a catalase-peroxi-
dase (KatG) participates in isoniazid activa-
tion (9): (i) isoniazid, NADH (10), Mn?*
ions, and oxygen (II) are all required for
InhA inhibition; (ii) KatG is an efficient
catalyst for oxidation of Mn?* ions (Mn?* —
Mn3**) (12) and the addition of KatG accel-
erates isoniazid-dependent inhibition of InhA
(13); (iii) deletions or mutations in the KatG
gene are the single largest determinant of
isoniazid resistance in clinical isolates (14)
and transformation of the KatG gene into
isoniazid-resistant M. tuberculosis restores iso-
niazid sensitivity (I5). It has been proposed
that the activated form of isoniazid is an
intermediate in the formation of isonicotinic
acid, isonicotinamide, and pyridine-4-carbox-
aldehyde, the products of isoniazid oxidation,
none of which inhibits InhA (16).

About 25% of the clinical isolates of
isoniazid-resistant M. tuberculosis contain
mutations within the promoter or structural
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regions of the inhA gene, and no inhA mu-
tations have been identified in isoniazid-
sensitive isolates (14). Four different clini-
cal isolate mutations (at residues 16, 21, 78,
and 95) result in single amino acid substi-
tutions within or near the NADH binding
region of InhA (17). The location of the
S94A mutation is also within the NADH
binding region. As demonstrated by x-ray
crystallography, the S94A mutant displays a
reduced hydrogen bonding pattern between
NADH and the enzyme (18), resulting in
an increased Michaelis constant (K_) for
NADH (6). Isoniazid-dependent inhibition
of wild-type InhA requires the presence of

Fig. 3. Proposed pathway for formation of the
isonicotinic acyl-NADH inhibitor of InhA. Two pos-
sible scenarios are shown, in which an activated
form of isoniazid (isonicotinic acyl anion or radical)
covalently attaches to a form of NADH (NAD* or
NAD- radical) within the active site of InhA, while
retaining a tetrahedral carbon at position four of
the nicotinamide ring. Of the two scenarios, we
favor the free radical pathway because isoniazid-
dependent inhibition of INhA occurs at a faster rate
with NADH than with NAD* (73). Whether InhA
catalyzes NAD- radical formation is not clear, be-
cause Mn?* ions are known to facilitate this pro-
cess (28). In addition, it is likely that Mn3* ions
facilitate the formation of isonicotinic acyl radicals
and KatG participates in isoniazid activation by
increasing the rate of the conversion of Mn2* to
Mn2*ions (71, 12). There are reports in the litera-
ture in which certain combinations, such as isoni-
azid and Mn?* ions (29) as well as isoniazid and
peroxidase enzymes (30), are known to generate
free radical species. Furthermore, the final prod-
ucts of the KatG oxidation of isoniazid are likely to
be formed through an isonicotinic acyl radical in-
termediate (76) and spin-trapping techniques

esea

NADH, and inhibition of the S94A mutant
occurs only when the concentration of
NADH is increased (10), which implies
that there is a correlation between the abil-
ity of the enzyme to bind NADH and to
become inhibited by activated isoniazid.
Furthermore, acyl-ACP substrates can pre-
vent isoniazid-dependent inhibition of
InhA, which suggests that activated isoni-
azid interacts with the substrate binding
region of InhA (13).

Crystals produced from InhA inhibited
by isoniazid (19) were isomorphous to those
of the native enzyme (18) and were used to
collect an x-ray diffraction data set to 2.7 A
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have identified the isonicotinic acyl radical as one of the products of peroxidase-catalyzed oxidation of

isoniazid (37). Produced with chem-D draw (32).

Fig. 4. Molecular contacts between
isonicotinic acyl-NADH and the ac-
tive site of InhA. The isonicotinic
acyl group derived from isoniazid is
red, the NADH portion of the analog
is blue, the side chains of InhA are
green, and Ser®4, the residue that
causes isoniazid resistance when
converted into Ala, is magenta.
Numbers represent the distance in
angstroms between selected at-
oms. The orientation of the isonico-
tinic acyl group with respect to the
NADH portion of the inhibitor is

such that its carbonyl oxygen is po- Leutnrf
sitioned about halfway between —N
two hydrogen bond donors, the
amide nitrogen of the nicotinamide

ring, and the 2’-hydroxyl oxygen of
the nicotinamide ribose ring. In ad-
dition, the nitrogen atom of the
isonicotinic acyl group is within hy-
drogen-bonding distance of a bur-
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ied water molecule held by the side chain of Met'55. The pyridine ring of the isonicotinic acyl group is
surrounded by hydrophobic residues, which include Phe'4®, Gly'®2, Pro'93, Leu?'8, Tyr'%8, and Trp222,

100

resolution (20). The resulting difference

Fourier (F, — F,) electron density map
showed that the activated form of isoniazid
was covalently linked to the NADH within
the active site of InhA (21). The modified
NADH consists of an isonicotinic-acyl group
from isoniazid attached through its carbonyl
carbon to the carbon at position four of the
nicotinamide ring (Fig. 1). The isonicotinic-
acyl group replaces the 4S (and not the 4R)
hydrogen of NADH, which is the same po-
sition in NADH involved in the hydride
transfer that occurs during reduction of
enoyl-ACP substrates (6). Furthermore, the
covalent attachment was verified by mass
spectrometry (22). The mass spectrum of
isoniazid-inhibited InhA reflects the pres-
ence of a compound with a molecular mass
of 770 daltons, which is in agreement with
the crystallographic model for the isonico-
tinic-acyl- NADH (Fig. 2).

Earlier proposals have suggested that iso-
niazid can be activated to either an isonico-
tinic acyl anion (23) or an isonicotinic acyl
radical (16). The x-ray crystallography and
mass spectrometry results show that the car-
bon at position four of the nicotinamide ring
of the isonicotinic acyl-NADH is tetrahedral
and retains one hydrogen. This suggests that
formation of the isonicotinic acylNADH
consists of addition of either an isonicotinic
acyl anion to NAD™ or an isonicotinic acyl
radical to an NAD " radical (Fig. 3). Further-
more, isonicotinic acyl-NADH formation
occurs within the active site of InhA (not in

Fig. 5. Superposition of the active sites of InhA
with bound NADH (yellow) and with bound isoni-
cotinic acyl-NADH (red). The only conformation-
al difference between the active sites is displace-
ment of the side chain of Phe'#®. In the native
enzyme, NADH binds at the bottom of a large
open cavity, and the side chain of Phe'® lies
immediately above the nicotinamide ring, ap-
pearing to protect the reactive portion of NADH
from solvent. In the presence of the isonicotinic
acyl group, the side chain of Phe'#® has rotated
away from the nicotinamide ring, creating space
for the isonicotinic acyl group. In addition, the
side chain of Phe'#® is now oriented adjacent to
the pyridine ring of the isonicotinic acyl group,
allowing it to participate in an aromatic ring-
stacking interaction. Produced with the program
Insight (32).
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solution or within KatG) because an incu-
bation mixture containing all the reaction
components, except InhA, does not produce
a detectable amount of isonicotinic acyl-
NADH (24).

The crystal structure of isoniazid-inhib-
ited InhA provides an explanation for the
exquisite specificity of activated isoniazid
for InhA. The location and orientation of
the isonicotinic acyl group are complemen-
tary to those of the surrounding InhA side
chains, which create a specific binding
pocket for the isonicotinic acyl group (Fig.
4). In addition, the size and shape of the
pocket could accommodate the isoniazid
analog ethionamide. Although KatG is not
the activator of ethionamide (13), ethio-
namide also requires activation and, by
analogy to isoniazid, we propose that acti-
vated ethionamide inhibits InhA by be-
coming covalently attached to position four
of the nicotinamide ring of NADH by a
2-ethyl isonicotinic thioacyl group.

_ Comparison of the crystal structures of
InhA with bound NADH (18) and with
bound isonicotinic acyl-NADH reveals that
the only significant difference in the pro-
tein is location of the side chain of Phe!4”
(Fig. 5). When isonicotinic acyl-NADH is
bound, the side chain of Phe'4? has rotated
~90° and forms an aromatic ring-stacking
interaction with the pyridine ring of the
isonicotinic acyl group. Although a binding
constant that describes the affinity of InhA

for isonicotinic acyl-NADH has not been
determined, this new structural arrange-
ment would increase the affinity over
NADH alone. Similarly, mutations with
decreased affinity for NADH (such as
S94A) are likely to possess decreased affin-
ity for isonicotinic acyl-NADH.

The existence of the isonicotinic acyl-
NADH inhibitor, the affinity of InhA for
NADH, and the order in which NADH and
acyl-ACP substrates bind InhA now become
critical to explaining InhA-related isoniazid
susceptibility and resistance in M. tuberculo-
sis. Kinetic isotope analysis of InhA has dem-
onstrated that the binding sequence of
NADH and long-chain acyl-ACP substrates
is not strictly ordered, but there is a prefer-
ence for NADH binding first (6). This pref-
erence would leave most of the wild-type
enzyme in the NADH-bound form, available
for attack by activated isoniazid. If wild-type
InhA cannort release significant amounts of
isonicotinic acyl-NADH, this will effectively
create permanent inhibition of the enzyme
and prevent mycolic acid biosynthesis. In
contrast, the decreased affinity of the S94A
mutant for NADH would promote acyl-
ACP substrates binding  before NADH,
thereby protecting most of the enzyme from
activated isoniazid. When the isonicotinic
acyl-NADH is formed on the mutant en-
zyme, the lowered affinity for NADH pro-
motes release of isonicotinic acyl-NADH,
allowing normal substrate catalysis to pro-

Table 1. Data collection and model refinement statistics: space group P6,22; lattice constants, a = b
=100.53 A, ¢ =138.96 A, a = B = 90.0°, and y = 120.0° rms, root mean square. Completeness =
(number of Fopsevea/NUMber Of Fexpeated) X 100; Rgym = [Sl¢ = /(1) x 100; average /ol =
S(/al)/number of f; Rvalue = [3 (| Foyserved — Feaicuiated |}/ 2 Fonseredl] X 100; Ryee = R value of 10%

of the data omitted at random.

Overall Highest shell
Resolution A 10.00t0 2.70 2.77 10 2.70
Unigue reflections 10,621 394
Completeness (%) 91 50
Rsym based on / (%) 16.4 34.3
Average //c! 1.3 2.4
R value (%) 20.2 27.8
Riee (%) 29.7 43.3
Number of
Temperature
nonhydrogen 25
atoms factor (A%)
Protein main chain 1072 21.3
Protein side chain 922 23.3
Isonicotinic acyl-NADH 52 22.5
Ordered water molecules 68 30.6

rms deviation

from ideal
Bond length (&) 0.01
Bond angles (°) 1.9
Dihedral angles (°) 26.1
Improper angles (°) 2.2
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ceed and resulting in isoniazid-resistant tu-
berculosis.

The mechanisms of drug action and drug
resistance presented here for isoniazid are
quite different from those predicted for iso-
niazid by analogy to diazaborine attachment
to the 2'-hydroxyl oxygen of the nicotin-
amide ribose of the NAD™ of the Escherichia
coli enoyl-ACP reductase (Fabl) (25). The
crystal structure of the complex between
isonicotinic acyl-NADH and InhA provides
a basis for the design of agents that inhibit
InhA without the need for KatG drug acti-
vation. The pathway of mycolic acid biosyn-
thesis is essential to mycobacteria and there-
fore InhA is a logical choice for the design of
drugs that control growth of M. tuberculosis.
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Ultraviolet-Induced Cell Death Blocked by a
Selenoprotein from a Human
Dermatotropic Poxvirus

Joanna L. Shisler, Tatiana G. Senkevich, Marla J. Berry,
Bernard Moss*

Selenium, an essential trace element, is a component of prokaryotic and eukaryotic
antioxidant proteins. A candidate selenoprotein homologous to glutathione peroxidase
was deduced from the sequence of molluscum contagiosum, a poxvirus that causes
persistent skin neoplasms in children and acquired immunodeficiency syndrome (AIDS)
patients. Selenium was incorporated into this protein during biosynthesis, and a char-
acteristic stem-loop structure near the end of the messenger RNA was required for
alternative selenocysteine decoding of a potential UGA stop codon within the open
reading frame. The selenoprotein protected human keratinocytes against cytotoxic ef-
fects of ultraviolet irradiation and hydrogen peroxide, providing a mechanism for a virus
to defend itself against environmental stress.

The trace element selenium is essential for
survival, as demonstrated by the early em-
bryonic lethality of targeted disruption of the
selenocysteine (Sec) tRNA gene (1). Sever-
al lines of evidence, mostly based on a de-
crease or increase in dietary selenium, sug-
gest that selenoproteins have roles in anti-
oxidant defenses, thyroid function, repro-
ductive capacity, and protection against
tumors and virus infections (2, 3). Although
selenoproteins are present in Bacteria, Ar-
chaea, and Eukarya, heretofore no viral sel-
enoprotein has been demonstrated. A recent
analysis of the DNA sequence of molluscum
contagiosum virus (MCV) revealed an open
reading frame (ORF), MCO066L, with homol-
ogy to human glutathione peroxidase (4), a
well-characterized selenoenzyme that reduc-
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es cytotoxic peroxides (2, 5). The MCV
contains more than 150 genes (6) and, like
other poxviruses, replicates in the cytoplasm
of infected cells (7). It resides exclusively in
the human epidermis, where it causes persis-
tent, benign neoplasms in children and es-
sentially untreatable opportunistic infections
in AIDS patients (8). Apoptosis plays an
important role in the biology of the epider-
mis and may provide a mechanism for regres-
sion of some epidermal neoplasms (9). The
putative MCV glutathione peroxidase may
protect infected cells against ultraviolet
(UV) irradiation, which is known to induce
apoptosis through the action of hydrogen
peroxide and superoxide anions (10).

The MC066L, ORF was predicted to en-
code a selenoprotein because of the presence
of a potential UGA stop codon, which could
be decoded as Sec, within the region of ho-
mology with glutathione peroxidase (4). Rec-
ognition of the Sec codon is relatively ineffi-
cient and depends on a secondary structural
selenocysteine insertion sequence (SECIS) el-
ement, which occurs immediately after UGA
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