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Discrete Start Sites for DNA Synthesis
in the Yeast ARS1 Origin

Anja-Katrin Bielinsky and Susan A. Gerbi*

Sites of DNA synthesis initiation have been detected at the nucleotide level in a yeast
origin of bidirectional replication with the use of replication initiation point mapping. The
ARST1 origin of Saccharomyces cerevisiae showed a transition from discontinuous to
continuous DNA synthesis in an 18 —base pair region (nucleotides 828 to 845) from within .
element B1 toward B2, adjacent to the binding site for the origin recognition complex,

the putative initiator protein.

An origin of bidirectional DNA replica-
tion is characterized by the transition be-
tween continuous DNA synthesis (proceed-
ing in one direction) and discontinuous
synthesis (proceeding in the opposite direc-
tion). We have developed replication initi-
ation point (RIP) mapping to determine
this transition in the autonomously repli-
cating sequence (ARS) 1 of the yeast Sac-
charomyces cerevisiae.

ARS! functions as an origin of DNA
replication (ORI) both on a plasmid and in
its normal context on chromosome IV (1).
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chemistry, Division of Biology and Medicine, Brown Uni-
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ARSI-containing plasmids respond normal-
ly to the cell cycle, duplicating once per
cycle (2), and replication is initiated by the
same cellular protein machinery acting on
chromosomes.

ARS! is composed of subdomains A, BI,
B2, and B3 (3). Subdomains A and Bl are
recognized by the origin recognition com-
plex (ORC) (4), the putative initiator pro-
tein (5) indispensable for origin function
(6, 7). Element B2 is easily unwound DNA
(8) and element B3 is a binding site for the
ARS binding factor I (ABFI) (9).

RIP mapping, described here, has suffi-
cient sensitivity for study of eukaryotic
origins, unlike an earlier method (10). It
allows precise mapping of initiation sites
for DNA synthesis and was applied to a
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digested with A-exonuclease (RI) was used as template DNA. Sequenc-
ing reactions were prepared with dideoxyadenosine 5'-triphosphate
(ddATP) (A), dideoxycytidine 5'-triphosphate (ddCTP) (C), dideoxygua-

193-base pair (bp) fragment containing
yeast ARS1. We chose the wild-type ARSI
construct (pARS1/WTA) transformed
into S. cerevisiae strain SP1 (approximate-
ly two copies per cell), also used for other
analyses of origin function (3, 11). Nucle-
ar DNA was isolated from asynchronously.
growing cultures, and replicative interme-
diate (RI) DNA was enriched by benzo-
ylated naphthoylated DEAE (BND) cellu-
lose column chromatography (12). RI
DNA was treated with A-exonuclease to
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Fig. 2. RIP mapping of the yeast ARS1 origin. (A)
Analysis of the top and (B) bottom strand. RI DNA
from SP1/pARS1/WTA digested with A-exonu-
clease was used as template DNA. Double-
stranded, nonreplicating yeast DNA cleaved with
Eco Rl (ds/E) or Hind Il (ds/H) served as a control.
Sequencing reactions with ddATP (A), ddCTP (C),
ddGTP (G), or ddT TP (T) are shown. The position
of a polymerase pause site at nt 845 seen with
primer —90 is indicated by an asterisk. tp, transi-
tion point.

96

orientation.

eliminate nicked DNA (12) (Fig. 1A).
Nascent DNA strands with an attached
RNA primer are resistant to A-exonucle-
ase digestion (13) and were subsequently
used as template DNA to extend a primer
to the junction with the RNA primer.

RIP mapping of simian virus (SV) 40
ORI (Fig. 1B) indicates essentially the same
start sites as those previously identified by a
different method (10). Multiple individual
5" DNA ends represent multiple start sites
for SV40 DNA synthesis. Blank areas on
the gel reflect regions of continuous DNA
synthesis. The nucleotide position at the 5’
end of the smallest detectable fragment
marks the transition point between discon-
tinuous and continuous DNA synthesis
(Fig. 1B) and thus the site of leading strand
initiation.

RIP mapping was next used to analyze
ARSI. To demonstrate that the primers an-
nealed specifically, we used double-stranded
nonreplicating DNA (dsDNA) cleaved at a
unique restriction site as the template for
primer extension to the restriction site (Fig.
2). No endogenous pause sites were detected
for primer extension on the top strand.
However, when the bottom strand was an-
alyzed, a second fragment sometimes ap-
peared that we interpreted as an endogenous
pause site because the band also occurred
when the yeast ARSI plasmid was replicated
in bacteria, indicating that it was not linked
to the replication process in yeast (14).
When nascent DNA was analyzed with
primers rev [V and —90 (Fig. 2, lanes RI),
which annealed 100 nucleotides (nt) be-
yond the left and right borders of ARSI,
respectively, multiple individual start sites
for DNA synthesis were detected with a
distinct transition from discontinuous to
continuous initiation. We confirmed the
start sites mapped on each strand using dif-

nosine 5'-triphosphate (ddGTP) (G), or dideoxythymidine 5'-triphosphate
(ddTTP) (T). Selected nucleotide positions (lane T) are numbered for

ferent primers (14). Thus, within the 400-bp
region containing ARSI and adjacent vector
sequences, the transition point for the top
strand mapped to nt 845 and for the bottom
strand to nt 828 (Fig. 3B). Hence, there is
an 18-bp transition region (including the
bands at each end), which partly overlaps
the ORC binding site. The polyomavirus
origin also shows a transition zone of 18 bp
(15), but the SV40 origin transition occurs
within 2 to 3 nt (10) (Fig. 3A).

Additional evidence that the initiation
sites we observed were linked to the process
of replication was provided by analyzing nas-
cent strands derived from an inactive copy of
ARSI, carrying a mutation in element A,
that is replicated through function of an
active wild-type ARSI on the same plasmid
(16). If replication forks generated by the
wild-type ARSI origin proceed at the same
rates in both directions, they should meet at
approximately nt 2900 of the construct
pARS/A~&WT (Fig. 4A). DNA replication
through the inactive ARSI/A™ would be
discontinuous on the bottom strand and
continuous on the top strand. The replica-
tion initiation point patterns determined by
RIP mapping were consistent with this mod-
el (Fig. 4B, lanes A™). No primer extension
products smaller than several kilobases were
detected on the top strand, whereas multiple
start sites were observed throughout ARSI/
A~ on the bottom strand (Fig. 4B).

The distance between ARSI sites most
frequently used (longest arrows in Fig. 3B)
was ~20 to 50 nt. However, Okazaki frag-
ments in higher eukaryotes average over
100 nt (17, 18). We analyzed the length of
nascent strands with intact bi- or triphos-
phorylated RNA primers in a labeling reac-
tion with the RNA-specific “capping en-
zyme” guanylyltransferase (19). Labeled
fragments of 20 to 35, 40 to 50, 60, 70 to 80,
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Fig. 3. Map of start sites detected for DNA synthesis. DNA 5' ends
detected as start sites for DNA synthesis in this study are indicated by
arrows. Stronger bands on the gels are shown by longer arrows and
weaker bands by shorter arrows. (A) SV40 origin (70). The striped bar and
asterisks indicate the transition point and DNA start sites, respectively,

previously mapped by Hay and DePamphilis (70). DUE, DNA unwinding
element. (B) Yeast ARS7. DNase |-hypersensitive sites mapped by
genomic footprinting and in vitro (4) are shown below the map, with the
most pronounced site indicated by an asterisk.

and 125 nt accumulated preferentially (Fig.
5), similar to the size distribution of nascent
strands in SV40 DNA (20) and Drosophila
(21). Therefore, this seems to be a con-
served feature among eukaryotes. Whether
this size distribution is due to DNA poly-
merase 8 pauses or reflects a discontinuous
mechanism underlying the formation of
Okazaki fragments (“discontinuity model”)
(20) remains to be determined.

What accounts for the multiple initiation
sites mapped in this study and for SV40 (10)
and polyomavirus (15)? It is likely that most
of these sites reflect positions where discon-
tinuous (lagging strand) synthesis initiates,
and individual replicating molecules might
choose different sites to initiate DNA syn-
thesis, resulting in population polymor-
phism. However, we cannot determine
whether some are alternate start sites for
continuous (leading strand) synthesis. In-
deed, the primer extension product that
maps to the transition point was not the
strongest band for the SV40 origin or for
yeast ARSI, as would have been expected if
it represented the only leading strand initi-
ation site used by every replicating molecule.

An origin of bidirectional replication can
be defined as a cis-acting sequence upon

which the trans-acting replication machin-
ery assembles. An indispensable part of this
machinery is the initiator protein (5). In
SV40 the transition region is close to the

Fig. 4. (A) Scheme of the pARS/A-&WT con-
struct and replication events. Replication initiates
within ARS/WT. Leading strands are shown as
bold, semicircular arrows. Lagging strands syn-
thesized by multiple Okazaki fragments are repre-
sented by short arrows. (B) RIP mapping of the
inactive mutant ARS/A~ copy. Details are as in
Fig. 2. Rl DNA was isolated from SP1/pARS/
A-8WT cells (A~) as well as from SP1/pARS1/
WTA cells (WT). Open circles indicate the posi-
tions of the fragments in lane A~

binding site for the viral initiator protein,
large tumor (T) antigen, and adjacent to a
DNA unwinding element (DUE) (22) (Fig.
3A). Similarly, the transition region in

Primer -90
AWTACGT

ttom

Primer rev IV (top)

: i | B2
=] . 1l
cgler o el
_-;ﬂ ° = ]A

= #5]82
= .
--,.5/]83 4 =2
= -"'é ° S :
-n-—h’/ 5 _’--
/ =
/

et
gt
& v
LIkg
_El
i

\
\
I
i

o
»#J |Vector -
o 8 | vector

. -

e

www.sciencemag.org * SCIENCE * VOL. 279 » 2 JANUARY 1998 97



M Rl ds Tot.
281 )
271 Fis
234 —#=
194 ——n
e —— 125
118~

Fig. 5. Size distribution of nascent strands in
yeast. (p)ppRNA-DNA chains from Rl DNA and
dsDNA and from total nuclear yeast DNA were
radiolabeled with [a-32P]GTP with the use of vac-

_ cinia guanylyltransferase (79). The label was re-
moved by alkali treatment, indicating that the label
was on RNA primers (74). The double-stranded
fraction contains “full-length” Okazaki fragments
of 125 nt that are not efficiently bound by BND
cellulose. “Full-length” Okazaki fragments of 125
nt are absent in Rl DNA, as they are already pro-
cessed or ligated to leading strands. Lane M: Mo-
lecular size marker (in bases) is 0X174 RF DNA cut
with Hae Il

ARSI is flanked by the binding site of ORC,
the putative initiator protein, and by ele-
ment B2 (8) (Fig. 3B). Mutations in B2 of
ARSI reduce replication efficiency (3),
whereas mutations in the transition region,
between Bl and B2, do not affect replication
efficiency in vivo (3). This suggests that the
transition region itself has no cis-regulatory
function.

The initiation points we detected in the
transition region coincide with deoxyribo-
nuclease I-hypersensitive sites that are ex-
posed on each strand of ARSI upon ORC
binding in vivo and in vitro (4) (Fig. 3).
The most pronounced hypersensitive site in
element Bl (4) is at the transition point on
the top strand. The coincidence of ORC-
induced hypersensitive sites with DNA ini-
tiation sites suggests that ORC defines the
transition region.
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Modification of the NADH of the Isoniazid Target
(InhA) from Mycobacterium tuberculosis
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The preferred antitubercular drug isoniazid specifically targets a long-chain enoyl-acyl
carrier protein reductase (InhA), an enzyme essential for mycolic acid biosynthesis in
Mycobacterium tuberculosis. Despite the widespread use of this drug for more than 40
years, its precise mode of action has remained obscure. Data from x-ray crystallography
and mass spectrometry reveal that the mechanism of isoniazid action against InhA is
covalent attachment of the activated form of the drug to the nicotinamide ring of nic-
otinamide adenine dinucleotide bound within the active site of InhA.

Mycobacterium tuberculosis is particularly
susceptible to isoniazid [isonicotinic acid hy-
drazide (INH)], the most widely used of all
antitubercular drugs (1). Although isoniazid-
based treatment regimens have been avail-
able since the 1950s, M. tuberculosis remains
the leading cause of death worldwide from
an infectious agent (2). Tuberculosis is now
a disease associated with poverty and with

acquired  immunodeficiency  syndrome
(AIDS); the greatest impact is experienced
in underdeveloped nations and in centers of
urban decay (3). In addition, the incidence
of incurable cases due to multidrug-resistant
mutants is on the rise. These trends have
generated renewed interest in elucidating
the molecular mechanisms of action of well-
established antitubercular drugs as an aid in
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