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Discrete Start Sites for DNA Synthesis 
in the Yeast ARSl Origin 

Anja-Katrin Bielinsky and Susan A. Gerbi* 

Sites of DNA synthesis initiation have been detected at the nucleotide level in a yeast 
origin of bidirectional replication with the use of replication initiation point mapping. The 
ARSl origin of Saccharomyces cerevisiae showed a transition from discontinuous to 
continuous DNA synthesis in an 18-base pair region (nucleotides 828 to 845) from within 
element B1 toward B2, adjacent to the binding site for the origin recognition complex, 
the putative initiator protein. 

A n  origin of bidirectional DNA replica- 
tion is characterized by the transition be- 
tween continuous DNA svnthesis (~roceed-  
ing in one direction) and discontinuous 
synthesis (proceeding in the opposite direc- 
tion). We have developed replication initi- 
ation point (RIP) mapping to determine 
this transition in the autonolnously repli- 
cating sequence (ARS) 1 of the yeast Snc- 
charomyces cerevisiae. 

ARSl functions as an origin of DNA 
replication (ORI) both on a plasmid and in 
its normal context on chromosome IV (1). 
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chemstry, Dv~sion of Boogy  and Medcine, Brown Un-  
verslty, Prov~dence, R 0291 2, USA. 
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,4RSl -containing plasmids respond normal- 
ly to the cell cycle, duplicating once per 
cycle ( 2 ) ,  and replication is initiated by the 
same cellular protein machinery acting on 
chromosomes. 

4RS 1 is composed of subdo~nains A, B 1,  
B2, and B3 (3) .  Subdomains A and B l  are 
recognized by the origin recognition com- 
plex (ORC) (4), the putative initiator pro- 
tein (5) indispensable for origin function 
(6, 7). Element B2 is easily unwound DNA 
(8) and element B3 is a binding site for the 
ARS binding factor I (ABFI) (9) .  

RIP mapping, described here, has suffi- 
cient sensitivity for study of eukaryotic 
origins, unlike an earlier method (10) .  It 
allows precise mapping of initiation sites 
for DNA synthesis and was applied to a 
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193-base pair (bp) fragment containing 
yeast ARS 1. We chose the wild-type ARS 1 
construct (pARSl/WTA) transformed 
into S. cerevisiae strain SP1 (approximate- 
ly two copies per cell), also used for other 
analyses of origin function (3, 11). Nucle- 
ar DNA was isolated from asynchronously 
growing cultures, and replicative interme- 
diate (RI) DNA was enriched by benzo- 
ylated naphthoylated DEAE (BND) cellu- 
lose column chromatography (1 2). RI 
DNA was treated with X-exonuclease to 

eliminate nicked DNA (12) (Fig. 1A). 
Nascent DNA strands with an attached 
RNA primer are resistant to X-exonucle- 
ase digestion (1 3)  and were subsequently 
used as template DNA to extend a primer 
to the junction with the RNA primer. 

RIP mapping of simian virus (SV) 40 
OR1 (Fig. 1B) indicates essentially the same 
start sites as those previously identified by a 
different method (1 0). Multiple individual 
5' DNA ends represent multiple start sites 
for SV40 DNA synthesis. Blank areas on 
the eel reflect regions of continuous DNA 
syntiesis. The nuvcleotide position at the 5' 
end of the smallest detectable fragment 
marks the transition point between discon- 
tinuous and continuous DNA synthesis 
(Fig. 1B) and thus the site of leading strand 
initiation. 

RIP mapping was next used to analyze 
ARSl. To demonstrate that the primers an- 
nealed specifically, we used double-stranded 
nonreplicating DNA (dsDNA) cleaved at a 
uniaue restriction site as the tem~late for 
primer extension to the restriction site (Fig. 
2). No endogenous pause sites were detected 
for primer extension on the top strand. 
However, when the bottom strand was an- 
alyzed, a second fragment sometimes ap- 
peared that we interpreted as an endogenous 
pause site because the band also occurred 
when the yeast ARSl plasmid was replicated 
in bacteria, indicating that it was not linked 

'ad- 
&. - d 
m-2  

ferent primers (14). Thus, within the 400-bp 
region containing ARSl and adjacent vector 
sequences, the transition point for the top 
strand mapped to nt 845 and for the bottom 
strand to nt 828 (Fig. 3B). Hence, there is 
an 18-bp transition region (including the 
bands at each end), which partly overlaps 
the ORC binding site. The polyomavirus 
origin also shows a transition zone of 18 bp 
(15), but the SV40 origin transition occurs 
within 2 to 3 nt  (10) (Fig. 3A). 

Additional evidence that the initiation 
sites we observed were linked to the Drocess 
of replication was provided by analyzing nas- 
cent strands derived from an inactive c o ~ v  of . , 
ARSI, carrying a mutation in element A, 
that is replicated through function of an 
active wild-type ARSl on the same plasmid 
(16). If replication forks generated by the 
wild-type ARSl origin proceed at the same 
rates in both directions, they should meet at 
approximately nt 2900 of the construct 
pARS/AP&WT (Fig. 4A). DNA replication 
through the inactive ARSlIA- would be " 
discontinuous on the bottom strand and 
continuous on the top strand. The replica- 
tion initiation point patterns determined by 
RIP mapping were consistent with this mod- 
el (Fig. 4B, lanes A-). No primer extension 
products smaller than several kilobases were 
detected on the top strand, whereas multiple 
start sites were observed throughout ARSlI 
A- on the bottom strand (Fig. 4B). 

Fig. 2. RIP mapping of the yeast ARSl origin. (A) to the replication process in yeast (14). The distance between ARSl sites most 
Analysis of the top and (B) bottom strand. RI DNA When nascent DNA was analyzed with frequently used (longest arrows in Fig. 3B) 
from SP1/pARS1/WTA digested with X-exOnu- primers rev IV and -90 (Fig. 2, lanes RI), was -20 to 50 nt. However, Okazaki frag- 
'lease was used as template DNA. which annealed 100 nucleotides (nt) be- ments in higher eukaryotes average over 
stranded, nonreplicating yeast DNA cleaved with yond the left and right borders of ARSl, Eco RI (ds/E) or Hind I l l  (ds/H) served as a control. 100 nt  (17, 18). We analyzed the length of 

Sequencing reactions with ddATP (A), ddCTP (C), respectively, multiple individual start sites nascent strands with intact bi- or triphos- 

~ ~ G T P  (GI, or ~ ~ T T P  (T) are shown. The position for DNA synthesis were detected with a phorylated RNA primers in a labeling reac- 
of a polymerase pause site at nt 845 seen with distinct transition from discontinuous t~ tion with the RNA-specific "capping en- 
primer -90 is indicated by an asterisk. tp, transi- continuous initiation. We confirmed the zyme" guan~l~ltransferase (19). Labeled 
tion point. start sites mapped on each strand using dif- fragments of 20 to 35,40 to 50,60,70 to 80, 
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DNase I-hypersensitive sites 

Fig. 3. Map of start sites detected for DNA synthesis. DNA 5' ends previously mapped by Hay and DePamphilis (10). DUE, DNA unwinding 
detected as start sites for DNA synthesis in this study are indicated by element. (B) Yeast ARS1. DNase I-hypersensitive sites mapped by 
arrows. Stronger bands on the gels are shown by longer arrows and genomic footprinting and in vitro (4) are shown below the map, with the 
weaker bands by shorter arrows. (A) SV40 origin (10). The striped bar and most pronounced site indicated by an asterisk. 
asterisks indicate the transition point and DNA start sites, respectively, 

and 125 nt accumulated preferentially (Fig. which the trans-acting replication machin- binding site for the viral initiator protein, 
5), similar to the size distribution of nascent ery assembles. An indispensable part of this large tumor (T) antigen, and adjacent to a 
strands in SV40 DNA (20) and Drosophifa machinery is the initiator protein (5). In DNA unwinding element (DUE) (22) (Fig. 
(21). Therefore, this seems to be a con- SV40 the transition region is close to the 3A). Similarly, the transition region in 
served feature among eukaryotes. Whether 
this size distribution is due to DNA uolv- - ,  
merase 6 pauses or reflects a discontinuous Primer rev lV [top) Primer -90 [bottom) 
mechanism underlying the formation of 
Okazaki fragments ("discontinuity model") W T A - A C G T  

(20) remains to be determined. 
What accounts for the multiple initiation 

sites mapped in this study and for SV40 (10) 
and polyomavirus (1 5)? It is likely that most 
of these sites reflect positions where discon- 
tinuous (lagging strand) synthesis initiates, 
and individual replicating molecules might 
choose different sites to initiate DNA syn- 
thesis, resulting in population polymor- 
phism. However, we cannot determine 
whether some are alternate start sites for Fig. 4. (A) Scheme of the pARS/A-&WT con- 
continuous (leading strand) synthesis. In- struct and replication events. Replication initiates 
deed, the primer extension product that within ARS/WT. Leading strands are shown as 

maps to the transition point was not the bold, semicircular arrows. Lagg~ng strands syn- 

strongest band for the SV40 origin or for thesized by multiple Okazaki fragments are repre- 
sented by short arrows. (B) RIP mapplng of the 

yeast ARS17 as have been if inactive mutant ARS/A- copy, Details are as in 
it represented the only leading strand initi- Fig. 2, DNA was isolated from SPIIpARS, 
ation site used by every replicating molecule. A--&WT cells (A-) as well as from S P ~ / ~ A R S ~ /  

An origin of bidirectional replication can WTA cells (WT) .  Open circles indicate the posi- 
be defined as a cis-acting sequence upon tions of the fragments in lane A-. 
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Fig. 5. Size distribution of nascent strands in 
yeast. (p)ppRNA-DNA chains from RI DNA and 
dsDNA and from total nuclear yeast DNA were 
radiolabeled with [ W ~ ~ P ] G T P  with the use of vac- 
cinia guanylyltransferase (19). The label was re- 
moved by alkali treatment, indicating that the label 
was on RNA primers (14). The double-stranded 
fraction contains "full-length" Okazaki fragments 
of 125 nt that are not efficiently bound by BND 
cellulose. "Full-length" Okazaki fragments of 125 
nt are absent in RI DNA, as they are already pro- 
cessed or ligated to leading strands. Lane M: Mo- 
lecular size marker (in bases) is OX1 74 RF DNA cut 
with Hae I l l .  

ARSl is flanked by the binding site of ORC, 
the putative initiator protein, and by ele- 
ment B2 (8) (Fig. 3B). Mutations in B2 of 
ARSl reduce replication efficiency (3), 
whereas mutations in the transition region, 
between B1 and B2, do not affect replication 
efficiency in vivo (3). This suggests that the 
transition region itself has no cis-regulatory 
function. 

The initiation points we detected in the 
transition region coincide with deoxyribo- 
nuclease I-hypersensitive sites that are ex- 
posed on each strand of ARSl upon ORC 
binding in vivo and in vitro (4) (Fig. 3). 
The most pronounced hypersensitive site in 
element B1 (4) is at the transition point on 
the top strand. The coincidence of ORC- 
induced hypersensitive sites with DNA ini- 
tiation sites suggests that ORC defines the 
transition region. 
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The preferred antitubercular drug isoniazid specifically targets a long-chain enoyl-acyl 
carrier protein reductase (InhA), an enzyme essential for mycolic acid biosynthesis in 
Mycobacterium tuberculosis. Despite the widespread use of this drug for more than 40 
years, its precise mode of action has remained obscure. Data from x-ray crystallography 
and mass spectrometry reveal that the mechanism of isoniazid action against lnhA is 
covalent attachment of the activated form of the drug to the nicotinamide ring of nic- 
otinamide adenine dinucleotide bound within the active site of InhA. 

Mycobacterium tuberculosis is particularly 
susceptible to isoniazid [isonicotinic acid hy- 
drazide (INH)], the most widely used of all 
antitubercular drugs (1 ). Although isoniazid- 
based treatment regimens have been avail- 
able since the 1950s, M. tuberculosis remains 
the leading cause of death worldwide from 
an infectious agent (2). Tuberculosis is now 
a disease associated with poverty and with 

acquired immunodeficiency syndrome 
(AIDS); the greatest impact is experienced 
in underdeveloped nations and in centers of 
urban decay (3). In addition, the incidence 
of incurable cases due to multidrug-resistant 
mutants is on the rise. These trends have 
generated renewed interest in elucidating 
the molecular mechanisms of action of well- 
established antitubercular drugs as an aid in 
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