
interaction of CD45 with its ligand may in- 
duce its dilnerization and in turn regulate the 
activity of Lck. In the absence of ligand, both 
wild-type and mutant CD45 molecules are 
catalytically active monomers. In the pres- 
ence of a CD45 ligand, both wild-type and 
mutant CD45 may dimerize, with different 
consequences for Lck activity. In cells ex- 
pressing wild-type CD45, the catalytic site 
of each molecule would be blocked bv the 
wedge containing glutamate 624 from the 
partner molecule, inhibiting CD45 phos- 
phatase activity. Consequently, Lck would 
remain in the phosphorylated, inactive 
conformation, and TCR signals would be 
inhibited. In E624R-mutant CD45 inole- 
cules, the wedge is altered so that the cat- 
alytic sites are not occluded in the l~gand- 
induced dimer. CD45 phosphatase activity 
W O L I ~ ~  be retained and maintain Lck in its 
active conformation. 

'We chose to mutate glutamate 624 of 
CD45 because it is analogous to aspartate 228 
w~thin the putative inhibitory wedge of 
RPTPa (8). Aspartate 228 of one monomer 
contacts the mobile  loo^ in the active site of 
the opposlng monomer through a hydrogen 
bond between the side chain carbosvl moietv 
of aspartate 228 and a backbone amihe of thk 
loop. This ~nteraction, along with other con- 
tacts, would preclude the necessary movement 
of the loop upon substrate b~nding, rendering 
the phosphatase inactive. Mutation of gluta- 
mate 624 of CD45 presumably disrupts the 
analoeous interaction in CD45 dimers, there- " 
by allowing the mob~le loop to change con- 
formation upon substrate binding, resulting in 
an active CD45 phosphatase. 

Ligand-induced dimerization plays a n  es- 
sential role in the regulation of receptor 
tyrosine kinases, leading to autophosphoryl- 
ation and activation of protein tyrosine ki- 
nase activity (15). Ligand-induced dimer- 
ization may also play a n  essential role in the 
regulation of RPTPs. However, instead of 
leading to activation, dimerization of 
RPTPs results in inhibition. 
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Dissociated Pat tern of Activity in Visual Cortices 
and Their Projections During Human Rapid Eye 

Movement Sleep 
Allen R. Braun," Thomas J. Balkin, Nancy J. Wesensten, 

Fuad Gwadry, Richard E. Carson, Mary Varga, Paul Baldwin, 
Gregory Belenky, Peter Herscovitch 

Positron emission tomography was used to measure cerebral activity and to evaluate 
regional interrelationships within visual cortices and their projections during rapid eye 
movement (REM) sleep in human subjects. REM sleep was associated with selective 
activation of extrastriate visual cortices, particularly within the ventral processing stream, 
and an unexpected attenuation of activity in the primary visual cortex; increases in regional 
cerebral blood flow in extrastriate areas were significantly correlated with decreases in the 
striate cortex. Extrastriate activity was also associated with concomitant activation of 
limbic and paralimbic regions, but with a marked reduction of activity in frontal association 
areas including lateral orbital and dorsolateral prefrontal cortices. This pattern suggests a 
model for brain mechanisms subserving REM sleep where visual association cortices and 
their paralimbic projections may operate as a closed system dissociated from the regions 
at either end of the visual hierarchy that mediate interactions with the external world. 

Since  its discovery in 1953 ( 1  ), the stage of lnovelnents (REb1 sleep) has been the sub- 
sleep characterized by electroencephalo- ject of unremitting scientific investiga- 
graphic desynchronization and rapid eye tion. Exceptional interest in REM sleep 
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Table 1. Results of SPM contrasts and correlations between REMs malized to a mean of 50). Regions in which rCBF rates are correlated 
and rCBF. Regions where rCBF values differ from baseline (REM-wake with REMs (REM Corrs) are tabulated with associated correlation 
and REM-SWS) are tabulated with associated Z-scores and magni- coefficients. In each case Talaraich coordinates indicate local maxima 
tude (Mag.) of rCBF differences (milliliters per 100 g per minute nor- or minima. 

Regions Brodman 
no. 

REM-wake REM-SWS REM Cons 

X Y Z Mag. Z-score X Y Z Mag. Z-score X Y Z r 

Extrastriate cortex 
Fusiform, lingular gyms 19,37 24 -60 -8 4.22 3.10 
Ventral lateral occipital-lnferotemporal cortex 19, 37 28 -66 4 2.62 3.30 
Lateral occipital-middle temporal cortex 18 32 -72 8 3.37 3.14 
Dorsal lateral occipital cortex 18,19 34 -82 12 3.64 3.10 

Striate cortex 
Calcarine cortex 17 

Paralimbic cortex 
Parahippocampal gyms- hippocampus 37 24 -20 -16 2.50 3.81 

Prefrontal cortex 
Lateral orbital cortex 10,11,47 38 38 -12 -5.10 -3.63 
Dorsolateral prefrontal cortex 9,10,46 32 44 20 -2.78 - 7.98 

'Left hemisphere only. t P  < 0.001. SP < 0.01 (otherwise P < 0.05). 

has been sustained in part because it is the 
stage during which intense visual imagery- 
laden dream activity is most prevalent (2). 
However, the neural mechanisms that un- 
derlie generation o f  these images remain 
uncharacterized. 

Although visual imagery (formation o f  
an internally generated percept) and visual 
perception (representation o f  an externally 
generated stimulus) are behaviorally dis- 
tinct. the extent to which this distinction is 
predicated o n  activation of different por- 
tions of the visual svstem is unclear. 

It is not  known, for example, whether 
images can be evoked at higher levels o f  the 
visual hierarchy-extrastriate cortices in- 
cluding V4, V5, inferotemporal and occip- 
itoparietal processing pathways, and their 
anterior projections-or whether this pro- 
cess requires the contribution of early visual 
areas-V1 and V2  regions of the striate 
cortex-that are normally involved in pri- 
mary visual perception. 

Previous functional imaging studies, per- 
haps because they utilized different visual 
imagery-eliciting tasks during wakefulness, 
have produced contradictory results (3, 4). 
Functional imaging during REM sleep af- 
fords a singular opportunity for study, be- 
cause it is characterized by naturally occur- 
ring visual imagery-laden mentation and is 
defined by well-established, measurable cri- 
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teria. Moreover, the functional anatomy o f  
the visual system during REM sleep is of 
significant interest and may provide clues 
about the nature of this enigmatic "third 
state" of consciousness (5). 

We used positron emission tomography 
(PET) and H2150 to  measure regional ce- 
rebral blood flow (CBF)  within visual cor- 

tices and their projections during REM 
sleep, compared wi th both wakefulness and 
stage 3-4 sleep [slow wave sleep (SWS)], 
and evaluated the regional cerebral corre- 
lates o f  the REMs that characterize this 
sleep stage. 

Ten healthy male volunteers (6) under- 
went sleep deprivation and restriction pro- 

A REM - Wake 

B REM- SWS 

creases and decreases in 
rCBF during REM sleep 
compared with postsleep 
wakefulness (A) and SWS 
(B) are illustrated as well as 
positive and negative cor- 
relations between rCBF 
values and REM density 
(C). In (A) and (B) stage- 
specific changes in rCBF 
were evaluated for AN- 
COVA corrected data sets 
[see (20)]; the resulting 
SPM (Z) maps are dis- 
played on a standardized 
magnetic resonance im- 
aging (MRI) scan, which 
was transformed linearly 
into the same stereotaxic 
(Talairach) space as the 
SPM (Z) data. Planes of 
section are located at - 10 
mm (left), 0 mm (middle), 
and + I 0  mm (right) rela- 
tive to the anterior com- 
missural-posterior commissural line. Values are Z-scores representing the significance level of changes 
in normalized rCBF in each voxel; the range of scores is coded in the accompanying color table, with 
blue-white designating Z-scores of -4.0 and below and with dark red designatingz-scores of +4.0 and 
above. In (C) rapid conjugate eye movements recorded during the 180 s after the start of the scan were 
summed and correlated with normalized rCBF images on a pixel-by-pixel basis. The map illustrates 
these correlation coefficients displayed on the standardized MRI scan at the same planes of section. The 
range of coefficients is coded in the accompanying color table, with blue-white designating coefficients 
of -0.75 and below and with dark red designating coefficients of +0.75 and above. Location of local 
minima and maxima for Z-scores and correlation coefficients are summarized in Table 1. 

- -75 

C Correlatian RE& vs. rCBF 
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cedures (7)  before the  scanning session (8) .  
Scans were perfortnecl during polysomno- 
graphically defined uninterrupted sleep 
stages 3-4 anLl during REM sleep ( 9 ) .  A 
waking study a-as performed at the  end of 
the  sleep period, after a t  least 15 mill of 

rCBF activations were detected. 
Because the use of resting scans as hase- 

dorsal processing stream was unchanged. 
Contrasts of REM sleep with either 

\vakefulness or S\XIS (Fig. 1, A and B and 
Table 1 )  also revealed significant changes 
in regions that represent principal targets of 
extrastriate projections, beyond the bound- 
aries of the  visual bystem (1 9) .  During REM 
sleep, activity in the  parah~ppocalnpal gyri 
anLl the  contlgirous portions of the  hip- 
pc>catnp~rs increasecl in parallel with the  
extrastriate cortices, and rCBF in the  ven- 
trolateral (orbital) and dorsolateral prefron- 
tal cortices was significantly Llecreased. 
There alere n o  l~etnispl~eral differences in 
the magnitude of these changes (2G). 

" 
line may introdlrce a possible confound 
( 1  4)-failure to detect differences in the , , 

primary visual cortex coulci 1.e due to spon- 
taneous  production of visual imagery during 

continuous wakef~~lness.  
Within-subject between-stage contrasts 

(REM-wake; REM-SWS) were analyred hv 
statistical parametric mapping (SPh'l) ( 1  0), 
and correlations Pet\veen the freiluency of 
REMs (REM dens it^) and rCBF during 
REh'l sleep were examined (1 1 ). In  addi- 

vvaking scans acciuired at rest-we contrast- 
ed REM sleen n i t h  SWS,  a state in ~vh ich  
spontaneo~rs visual imagery is unlikely to 
have occurreii ( 15) .  

This analysis not  only confirlned the  
ilissociation of activity in striate a n ~ l  extra- 
striate cortices but also sho\\.ed that the  
striate cortex n.as cleactivated during REbI 
sleep compareil n ~ i t h  S W S  (Fig. 1B and 
Table 1 ) .  Focal Lleactivation of the primary 
visual cortex n.as ilelimited in a single clus- 
ter of significant spatial extent (16) .  Fur- 
thermore, rCBF in the striate cortex was 
lower illrring REM sleep than 'luring S\VS 
even 1v11en absolute values corrected for 
partial pressure of C O ,  (PCO?) were evalu- 
ateci (although ilifferences diLl not reach 
statistical significance) (1 7). 

In contrast. rCBF in extrastriate cortices 

tion, regional data were extracted from the 
PET iinages ancl analy:ed by covariance 
techniili~es (principal conlponent analyses 
and regional intercorrelations) to assess 

T h e  sleep-stage contrast results were 
closely paralleleil 13y the spatial distrib~rtion 
of correlations lx tween REbI density and 
rCBF (Fig. 1 C  and Table 1 ) ;  REM density 
was positively correlateL1 with rCBF in ex- 
trastriate cortices in  130th hemisnheres, nar- 

f~rnctional connections bet~veen regions of 
the brain ( 12).  

Comparison of REM sleep anLl waking 
scans (Fig. 1'4 anil Table 1)  revealed focal , L 

titularly within ventral regions. In  contrast, 
REh'l density was negatively correlateil with 
rCBF in the  striate cortices. I n  addition, 
REbI densitv was nositivelv correlated rvith 

activations of the extrastriate (fusiform, in- 
ferotemporal, and lateral occipital) cortices 
during REM sleep, tnanifest in cluster, of 
significant spatial extent in hot11 hemi- 
spheres (13) .  These clusters diLl not encorn- 
nass the striate cortices icalcarine cortex and 

of the ventral processing stream-fusiform, 
inferotemporal, and ventral lateral occipital 

rCBF in  hippocampus and in parahip- 
pocampal gyri but was negatively correlated 
a.it11 rCBF in lateral orhital and Llorsolateral 
nrefrontal cortices. 

contiguous portions of the cuneus, as Llelim- 
ited in the Talairach atlas) where rCBF was 

cortices-was significantly higher  luring 
REM sleep than Lluring SWS [Fig. 1B and 
Table 1 (2-scores exceeded threshold in  the 
left hemisphere only)]; these regions n7ere 
includeLl in a larger cluster of significant 
activation (18) .  rCBF in  regions of the  

unchanged compared with n7akefulness. KO 
hemispheral differences in the magnitude of 

Results of the principal colnponent anal- 
ysis are illustrated in Fig. 2.  Striate and 
extrastriate regions loaded o n  the  same 
component in both instances but with op- 
posite signs-that is, across iniliviiluals in- 

a 0 
8 - 

-- 
-2 1 0 I 2 

Strlate cortex 

creases in  rCBF in extrastriate regions Llur- 
ing REbI sleep (compareil n.it11 either wake- 
fulness or S W S )  were associated with con- 
comitant Liecreases in the  primary visual 
cortex. Permutation tests i~xlicateil that 
these coinponents n.ere significant in each 
instance (I' < 0.05, exact),  and the  inverse 
relationsl~in between striate and extrastriate 
loadings was stronger for ventral extrastri- 
dte regions (21 ). Inverse relationships be- 
tween rCBF responses in selecteil regions of 
the  extrastriate and striate cortices are illus- 
trateil in Fig. 3 .  

These reslrlts suggest that a f~~nc t iona l  ,," 

ilissociation 17etween activity in the striate 
extrastriate visual cortices characterizes, 

and may constitute a definitlg feature of, 
REbI slee~l. REM sleerl xas  associated a i t h  

-2'- -- - 2 
-2 

Striate cortex 

REM-wake REM-SWS selective activation of regions that are locat- 
ed in higher or "ilownstream" portions of the 
visual hierarchy. These incl~rde regions that 
may constitlrte h~rman  analogues of V4 and 
\!5 as well as more anterior projections of 

Contrast 

Fig. 2. Results of principal component analyses 
depcting the first unrotated component for REM- 
wake and REM-SWS. Princpa component ana- 
yss was carred out on a difference matrix gener- 
ated for each contrast. Values represent loadings 
for each of the 20 regons n which weghts ex- 
ceeded 0.25 In absolute value. Extrastrate areas: 
crces,  fusform-~nferotemporal: triangles, lateral 
occipital. Strate areas: squares. The frst cotnpo- 
nent for REM-wake and REM-SWS contrasts ac- 
counted for 80.896 and 78.2'0 of the total vari- 
ance, respectively 

Fig. 3. Correatons between rCBF rates n strate 
and extrastrate codices. Values represent stan- 
dardzed dfference scores-that IS,  increases or 
decreases n rCBF durng REM sleep compared 
witii wake (A) and SWS (B), Z-transformed in each 
Instance, rCBF responses n extrastr~ate (Ta- 
airach x = -30. !! = -88, r = -4 in A; x = -31. 
y = -58, z = -8  n B) and striate (x = -1, y = 

-80. z = - 12. both A and B) cortices were neg- 
atively correlated in both instances: r2 = 0.952. 
REM-wake. P < 0.001' I-' = 0.911. REM-SWS, 
P < 0.001 

ventral object-processing and dorsal spatial- 
processing pathways (22). REM-associated 
activation in most instances was n o r e  robust 
in  extrastriate areas of the ventral stream. In 
contrast, the striate cortices were not acti- 
vated, and most analyses suggested that 
rCBF in the primary visual cortex may be 
significantly attenuated illlring REbI sleep. 
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These results were paralleled in  the  
analysis of correlations between rCBF and 
REM density ( 2 3 ) ,  suggesting a physiolog- 
ical mechanism that  may mediate the  ef- 
fects of REM sleep o n  the  visual cortex. In  
h ~ r n a n s ,  REMs are associated with cere- 
l ~ r a l  potentials that  bear strong sinlilarities 
to  Pontogeniculooccipital ( P G O )  waves, 
which mediate the  spontaneous central 
excitation of the  visual cortices during 
REh'l sleep in animals ( 2 4 ) .  P G O  waves 
may have a disproportionate effect o n  the  
excitability of extrastriate cortices. thus 
accounting for the  re la t~vely  se lec t~ve  ac- 
t ~ v a t i o n  of these reglons that  was observed 
in  this study (25) .  

REMs also serve as indices of dreamine: 
0 

,4ltl1ough subjects were not awakened and 
debriefed in  t h ~ s  study. REM densitv has , , 
been shown to correlate positively wlth the  
likelihood of dreamine. ~ l t h  the intensitv u 

and bizarreness of dream imagery, and with 
the nresence of Inore vlvld and visuallv 
active dreams (26).  Our  results thus suggest 
that the snontaneous eeneration of visual 

0 

itnages that occurs during REM sleep may 
be associated with isolated activation of the  
extrastriate cortices ( 2 7 ) .  

Lforeover, both principal component 
and correlation analyses, which may serve 
as a means of describing f~rnctional connec- 

u 

tions between brain regions, demonstrate a 
reciprocal relationship between act iv~ty in 
extrastrlate and strlate cortlces during REbI 
sleep, a n  observatlon that has not previous- 
ly been described in PET studies of visual 
f~rnction during either \\laking or sleep (28- 
30) .  

Vi'hat mechanism might account for 
this? It has been l~ypotl~esized that,  because 
dreams typically consist of integrated and 
coherent v~sua l  images, there should be re- 
entrant activation of the  strlate cortex by 
extrastrlate back-projections during REM 
sleep, as has been suggested to occur during 
waking imagery tasks (31 ) .  O ~ r r  reslrlts sup- 
port an  alternative hypothesis. Because 111- 

creaseL{ synaptic actlvity in extrastriate ar- 
eas is coupled to decreased activity in the 
primary visual cortex, firing of the extrastri- 
ate back-projections may in  fact be attenu- 
ated-or acti\,ely ~nhibited-during REM 
sleep. Rather than leading to reentrant ac- 
tivation of V1 and V2, extrastriate activa- 
tion during REbI sleep may be linked to 
suppression of activity in pritnary regions 
connected to the  external environment 
(32) .  

Indeed, REh'l sleep appears to be char- 
acterizeL1 by a double dissociation. Activity 
in extrastriate regions appears to be recip- 
rocally related not  only rvith activlty 111 V l  
and V2 but also with that in  higher order 
frontal associat~on areas to  which extrastri- 
ate cortices project-dorsolateral prefrontal 

and lateral orbital cortices-l~eteromodal 
regions in which visual infor~nation is 
bound with that processed in other areas of 
the  brain (33) .  A t  the same time, however, 
we ol~served concurrent activation of extra- 
striate regions and limbic-related projection 
areas-parahippocampa1 cortices and con- 
tiguous portions of the  hippocampus-and 
activity in these nlesial temporal regions 
was positi\,ely correlated with R E N  density. 
Of note,  sinlilar results were observeil in the  
anterior cingirlate cortex (Fig. 1 ) ,  to which 
the  parahippocampal cortices project. 

This pattern suggests that pathways that 
lnediate the  transfer of inforlnation be- 
tween visual cortices and the lilnbic system 
may be active during REM sleep, but path- 
ways that lnediate transfer of \,lsual infor- 
Ination to prefrontal association cortices are 
not.  

Thus, iluring REh'l sleep, the  extrastriate 
cortices and paraliinbic areas to which they 
project may be operating as a closed system, 
functionally disconnected from frontal re- 
gions in  w l ~ l c h  the  highest order integration 
of visual information takes place. Such a 
dissociat~on could explain many of the ex- 
periential features of dreams, including 
heightened emotionality, ~mcritical accep- 
tance of bizarre dreatn content,  a dearth of 
parallel thoughts or images, temporal d~sor l -  
entation, and the  absence of reflective 
anrareness (34). 

REM sleep may represent a state in 
which the hrain engineers selective activa- 
tlon of an  interoceptive network, which is 
dissociated from primary sensory and het- 
eroinodal association areas at either end oT 
the visual hierarchy that lned~ate  interac- 
tions with the  external world. 
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Discrete Start Sites for DNA Synthesis 
in the Yeast ARSl Origin 

Anja-Katrin Bielinsky and Susan A. Gerbi* 

Sites of DNA synthesis initiation have been detected at the nucleotide level in a yeast 
origin of bidirectional replication with the use of replication initiation point mapping. The 
ARSl origin of Saccharomyces cerevisiae showed a transition from discontinuous to 
continuous DNA synthesis in an 18-base pair region (nucleotides 828 to 845) from within 
element B1 toward B2, adjacent to the binding site for the origin recognition complex, 
the putative initiator protein. 

An origin of bidirectional DNA replica- 
tion is characterized by the transition be- 
tween continuous DNA svnthesis (nroceed- 
ing in one direction) and discontinuous 
synthesis (proceedtng in the opposite direc- 
tion). We have developed replication initi- 
ation point (RIP) mapping to deterlnine 
this transition in the autonomously repli- 
cating sequence (ARS) 1 of the yeast Snc- 
charomyces cerevisiae. 

ARSl functions as an origin of DNA 
replication (ORI) both on a plasmid and in 
its normal context on chroinoso~ne IV (1). 
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,4RS1 -containing plasmids respond normal- 
ly to the cell cycle, duplicating once per 
cycle ( 2 ) ,  and replication is initiated by the 
same cellular protein machinery acting on 
chromosomes. 

4RS 1 is composed of subdolnains A, B 1,  
B2, and B3 (3) .  Subdomains A and B l  are 
recognized by the origin recognition com- 
plex (ORC)  (4), the putative initiator pro- 
tein (5) indispensable for ortgin function 
(6 ,  7). Element B2 is easily unlvound DNA 
(8) and element B3 is a binding site for the 
ARS binding factor I (ABFI) (9) .  

RIP mapping, described here, has suffi- 
cient sensitivity for study of eukaryotic 
origins, unlike an earlier method (10) .  It 
allows precise mapping of initiation sites 
for DNA synthesis and was applied to a 




