
however, it is conceivable that other triva- 
lent ions, such as A13+, B3', and C2+, may 
pair with Fe3+ and substitute for the MgZ+- 
Si4+ pair, thus favoring the forlnation of 
Fe3+ by oxidizing Fez+. This paired substi- 
tution provides an interpretation for the 
reported increase of the apparent K values 
in the presence of AlZO3 (21 ), B z 0 3  (23), 
and a variety of transition-element oxides 
(such as Ni, Cr ,  and M n )  (1 6). Major and 
trace element partitioning could thus be 
coupled with ferrous and ferric distribu- 
tions. T h e  electrical conductivity (8, 10, 
3 8 ) ,  radiative hhat transfer, and melting 
behavior (9)  are all hlghly dependent on  
the Fe contents and oxidation states of 
component phases. Likewise, the density, 
thermal expansion, and elasticity of the 
mantle models (4,  7, 39, 40) must be 
adjusted with variable composition. 
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Impact of Molecular Order in Langmuir-Blodgett 
Films on Catalysis 

Karl Tollner, Ronit Popovitz-Biro, Meir Lahav,* David Milstein* 

Catalytically active Langmuir-Blodgett films of a rhodium complex were prepared and 
characterized to determine the possible effect of the molecular order of metal complexes 
on catalytic activity. The hydrogenation of carbon-oxygen double bonds was used as a 
model reaction. The complex in solution exhibited low catalytic activity, whereas it was 
highly active in the film. The catalytic activity was found to be highly dependent on the 
orientation of the complex within the film. The reactions were also highly selective with 
regard to the substrate. These observations and the observed rate dependence on 
temperature strongly implicate the molecular order of a metal complex as an important 
dimension in catalysis. 

Homogeneous catalysis by metal complex- 
es plays a major role in  chemical and bio- 
logical processes and is used for the produc- 
tion of millions of tons of chemicals annu- 
ally (1).  By controlling and modifying the 
properties of the metal center, the catalytic 
activity can be optimized and high degrees 
of efficiencv and selectivitv can be 
achieved. ~ u L h  catalysis generally involves 
discrete metal comnlexes that function in- 
dependently of each other. We are interest- 
ed in the properties of highly ordered, two- 
dimensional structures with catalytically ac- 
tive metal complexes. Our approach is 
based on the generation of Langmuir- 
Blodgett (LB) films from appropriately 
modified complexes. This approach allows 
analysis of the f i l m  by well-established an- 
alytical methods (2). The  catalytic activity 
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of the film may be controlled by systematic 
structural modifications. Furthermore, svn- , , 
ergistic effects may occur as a result of in- 
teractions of lnolecules in a close-packed 
LB film. 

Recently, an approach to the generation 
of chemically bound layers of metal com- 
plexes, which exhibit catalytic activity 
quite similar to that of the complexes in 
solution, was reported (3). W e  report here 
on  the generation of LB films of a rhodium 
complex, which show high catalytic activi- 
ty, whereas the complex exhibits low activ- 
ity in a homogeneous system. Moreover, the 
catalyst exhibits remarkably high substrate 
selectivity and is highly dependent on  the 
order and orientation of the films. The  
im~or tance  of order in the laver is also 
cle'arly manifested in the obser"ed depen- 
dence of the rate on  temnerature. 

We chose to study the amphiphilic com- 
plex 1 (Scheme I ) ,  an analog of the known 
air- and water-stable hydrogenation catalyst 
(bipy)rhodium(hexadiene)PF6 (bipy = bi- 
pyridine) (4).  This complex was prepared 
by reaction of the ligand 4,4'-diheptadecyl- 
2,2'-bipyridine (5) with [Rh(hexadiene) 
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Fig. 1. (A) Pressure-area isotherm of complex 1 
on water (compression rate: 20 mmlmin, coilapse 
point at 48 mN/m, area per molecule = 55 A"). (B) 
Bragg peak and (C) Bragg rod Intensity profile 
obtalned from complex 1 measured at 5°C and at 
45 mN/m, by grazing incidence x-ray diffracton 
on water (cts, counts; Kcts, k~locounts, in arbitrary 
unlts; q, and qz are the horlzonta and vertical 
scattering vectors, respectively) (16). 

Cl], in methanol in analogy to a literature 
procedure (4), followed by precipitation of 
the complex by addition of NaPF6. 

Complex 1 forms a stable monolayer on 
the air-water interface (Fig. 1A).  W e  trans- 
ferred the monolayer from the water surface 
to hydrophilic or hydrophobic glass slides, 

Scheme 1. Catalytc rhodium complexes 

at a pressure of 20 mN/m, using the Lang- 
muir-Blodgett technique (6) .  The confor- 
mation-sensitive symmetric and asymmetric 
CH,-stretching frequencies in the infrared 
(IR) spectrum of the compressed layer (on 
water and on  gold-coated glass) indicate 
closely packed and ordered structures (7). 
The  ultraviolet (!JV) spectra of the com- 
plex in solution and of the transferred 
monolayer were the same, indicating that 
the comnlex maintained its structure. 

The  degree of ordering in the monolayer 
was determined by synchrotron grazing in- 
cidence x-ray diffraction measurements per- 
formed on water at 5°C (Fig. 1R). A si~lgle , - 
Bragg diffraction peak at a q,, = (4577~) 

Table 1. Hydrogenation of acetone to isopropanol for LB and solution systems. N R ,  no reaction. 
Reaction conditions: 72 p s ~  H z ,  48 hours, 25"C, 0.1 1 mM acetone In water. 

Glass type Catalyst Turnover 

Hydrophlic 
Hydrophobic 

Hydrophobic 
Hydrophilic 
Hydrophilic 

None 
None 
Suspension of complex 1 
Complex 2, saturated aqueous solution 
Solution, separated from monolayer after catalysis 
Monolayer 
Quadruple layer 
Triple layer 
Monolayer on water surface 
Monolayer on water surface, stirred 
Complexes 1 or 2 in neat acetone 

N R  
N R  
N R 
NR 
No further reaction 
60,000 

sin(8) value of 1.360 k', corresponding to 
a d-spacing of 4.6 A,  was obtained (where 
q,, is the horizontal scattering vector, 20 is 
the diffraction angle, and A is the wave- 
length). The average crystallite size, as de- 
termined from the full width at half maxi- 
T u m  (FWHM) of the Rragg peak, was -45 
A, indicating a relatively low degree of 
order in the monolayer. The  film thickness, 
as estimated from the FWHM of the R;agg 
rod intensity profile (Fig. l C ) ,  was 21 A, a 
value compatible with the length of the 
alkvl chains that mostlv contributed to the 
diffraction. 

The catalytic activity was studied with 
two types of LR films having opposite top 
layer orientations, tail-to-glass (monolayer 
on  hydrophobic glass, hereafter denoted as 
ML, and quadruple layer on  hydrophilic 
glass hereafter denoted as QL) and head-to- 
glass (triple layer on hydrophilic glass, here- 
after denoted as TL) (Fig. 2).  The supported 
LB films were tested as catalysts for the 
hydrogenation of acetone in a dilute aque- 
ous solution (about 0.6% or 0.1 M)  at  room 
temperature under 72-psi hydrogen pressure 
without stirring (8). The transferred ML 
exhibited good catalvtic activitv 160,000 , . 
turnovers 48 hours'(9)], yielding isopro- 
nanol as the onlv observed oroduct las an- 
Hlyzed by gas chromatograph; ( G C )  A d  gas 
chromatography-mass spectrometry (GC- 
MS)]. The QL showed a slightly higher 
activity (70,000 turnovers in 48 hours), per- 
haps as a result of the higher degree of order 
in the multilaver due to better smoothing of 
small defects &I the glass surface. 

- 
Solutions of comulexes 1 or 2 in neat 

acetone under similar reaction conditions 
showed much lower activitv 1500 turnovers 
in 48 hours). N o  reductiol; of acetone was 
observed with susuensions of comnlex 1 in 
water, showing that the monolayer is re- 
quired for catalysis (10). Saturated aqueous 
solutions of the parent complex 2 also did 
not catalvze the reduction of acetone under 
the conditions used. 

When the solution of a catalytic reaction 
was separated from the monolayer and al- 

lowed to react further. no additional acetone 
hydrogenation was odserved, indicating that 
the reaction is not catalvzed bv soluble struc- 
tures that might have been fArmed (such as 
micelles or membranes). O n  the other hand, 
continuing the same reaction in the renewed 
presence of the monolayer resulted in further 
acetone hydrogenation. 

One  of the most revealing experiments 
a7as performed with a triple layer of com- 
plex 1 on hydrophilic glass. Here the upper 
layer a7as oriented as head-to-glass (Fig. 2).  
Reduction of acetone was not observed, 
indicating, that this orientation blocks the 
catalytically active centers. Moreover, this 
exoeriment indicates that under the condi- 
tions used the triple layer does not open up. 
The  tail-to-elass double laver that would 

u 

remain if the top layer was peeled off is 
expected to catalyze the reaction. 

T o  test whether the transfer of the films 
to a glass slide is essential, we prepared 
monolayers by dropping a solution of the 
catalyst in methylene chloride on the aque- 
ous solution surface (a 100 mM solution of 
acetone in water was used). After evapora- 
tion of the methylene chloride, an intact 
monolayer was formed (1 1 ) .  The catalyst 
concentration needs to be calculated exact- 
ly to give a densely covered surface (12). 
However, because of the small amounts 
used, errors can be large and the turnover - 
rates can differ significantly from one run to 

Fig. 2. Schematic presentation of the types of LB 
f m s  used in this study: (left) ML on hydrophobic 
glass, (center) TL on hydrophlc glass, and (right) 
QL on hydrophilc glass. 
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Table 2. Hydrogenaton of carbony compounds to alcohols. Reaction condtons: 72 psi H,, 48 hours, 
25"C, 0.1 1 mM carbony compound In water. 

Glass type Catalyst and substrate Turnover number Product 

- Complex 1 n neat acetone 500 sopropanol 
- Complex 1 n neat acetone 500 (acetone), lsopropano! + 

and butanone 300 (butanone) sec-butanol 
Hydroph~c QL, acetone and butanone 60,000 (acetone), lsopropanol 

NR (butanone) 
Hydroph~lc QL, butanone N R - 

Hydroph~c QL, acetaldehyde 40,000 Ethanol 

another. Dil~rting the solution ininirnizes 
the error in vol~un2 but hinders good mono- 
layer formation. Nevertheless, with this ap- 
proach turnovers of around 50,000 (after 48 
hours) were observed, showing that a 
 non no layer on the air-water interface acts as 
an excellent catalyst as well. Significantly, 
no reaction was observed when the solution 
was stirred (Table I ) .  

The LB films have very high substrate 
selectivitv (Table 2 ) .  When butanone was 
used instead of acetone, no product could 
be detected. Likewise, reaction of a 1: I 
mixture of acetone and butanone showed 
high preference In favor of acetone (ratlo of 
isopropanol to sec-butanol was greater than 
100:l) .  In sharu contrast, both ketones 
were reduced without differentiation under 
homogeneous conditions in which a solu- 
tlon of complex I in a I : 1 mixture of the 
neat ketones was used, although low turn- 
overs were obtained, as in the case of neat 
acetone (13). On  the other hand, acetalde- 
hyde was reduced by the quadruple layer to 
ethanol 1~1th  about 40,000 turnovers in 48 
hours, although other products were also 
formed ( 14). 

It is known that inonolaver crvstall~nitv 
changes with temperature (15). '~atalytik 
experiments at different temperatures using 
a quadruple layer are compatible with these 
changes (Fig. 3). At 4°C acetone was re- 
duced with only a few turnovers. When the 
teinnerature was increased the rate in- 
creased as well, passing through a inaxiin~uin 
at about 30°C and decreasing at higher 
temperatures. Importantly, the temperature 

!? layer P 
60,000 

0 

$ 40 000 

100,000 

effect was reversible; cooling the reaction 
from 45' to 30°C resulted in res~uinption of 
the high catalytic activity. In contrast, the 

80 OoO 

hydrogenation activity of complex 1 in ac- 
etone solution, although relatively very 
low, exhibited the expected increase in cat- 
alytic activity with temperature (Fig. 3). 
We are unaware of such a temperature de- 
nendence for anv other catalvtic reaction. 

I 

Quadruple , 
I I 

In contrast td acetone, thL reduction of 
acetaldehyde with a cluadruple layer, al- 
though not clean (14), occurred at 4°C 
with relatively high rates (34,000 turnovers 
in 48 hours). The rate increased with tein- 
nerature and decreased above 30°C in this 
case as well. 

These temperature effects suggest a ma- 
jor influence of LB film order on catalys~s. 
The expected rate increase with tempera- 
ture is ohserved as long as the ordered struc- 
ture is maintained. At temperatures above 
30°C the structure of the layer probably 
changes (from ordered to amorphous), re- 
sulting in the ohserved reactivity decrease. 
Upon cooling, the order IS regenerated, 
with resumption of the catalytic activity. 

We believe that these observations 
clearlv demonstrate a maior influence of 
ordered structures on a catalytic reaction. 
The catalvtic activitv of the rhodium com- 
plex 1 is dramatically increased in the or- 
dered structure and ~t is highly dependent 
on layer orientation. Moreover, high sub- 
strate selectivity is observed, prohably due 
to steric reasons. In addition, this reaction 
exhibits an unusual temnerature effect in 
metal-complex catalysis, which can be ex- 
plained by changes in molecular order in 
the layer. Further experiments are needed 
to gain mechanistic and structural under- - 
standing of these findings and extend them 
to other catalvtic reactions. 
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