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Transcription Regulation by
Initiating NTP Concentration:
rRNA Synthesis in Bacteria

Tamas Gaal, Michael S. Bartlett, Wilma Ross,
Charles L. Turnbough Jr., Richard L. Gourse*

The sequence of a promoter determines not only the efficiency with which it forms a
complex with RNA polymerase, but also the concentration of nucleoside triphosphate
(NTP) required for initiating transcription. Escherichia coli ribosomal RNA (rrn P1) pro-
moters require high initiating NTP concentrations for efficient transcription because they
form unusually short-lived complexes with RNA polymerase; high initiating NTP con-
centrations [adenosine or guanosine triphosphate (ATP or GTP), depending on the rm
P1 promoter] are needed to bind to and stabilize the open compiex. ATP and GTP
concentrations, and therefore rrn P1 promoter activity, increase with growth rate. Be-
cause ribosomal RNA transcription determines the rate of ribosome synthesis, the
control of ribosomal RNA transcription by NTP concentration provides a molecular
explanation for the growth rate—dependent control and homeostatic regulation of ribo-

some synthesis.

Protein synthesis is the dominant activity
of the bacterial cell (1). Ribosome synthesis
rates increase approximately with the
square of the growth rate to increase protein
synthesis at higher growth rates and to con-
serve biosynthetic energy at lower growth
rates. The relation between growth rate and
ribosome synthesis rate, referred to as
growth rate—dependent control, was de-
scribed almost 40 years ago and has been
the subject of intensive investigation ever
since (2, 3). Models have been proposed to
explain the phenomenon, but the molecu-
lar mechanism or mechanisms responsible
have not been determined (4).

Ribosomal RNA (rRNA) transcription
is the rate-limiting step in ribosome synthe-
sis, because ribosomal protein synthesis
rates are regulated by feedback mechanisms
sensitive to the IRNA concentration (5). In
each of the seven rm operons in E. coli,
tRNA is transcribed from two promoters,

P1 and P2 (Fig. 1A). Most rRNA transcrip-
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tion at moderate to high growth rates orig-
inates from the P1 promoters, whose activ-
ities increase with growth rate and are thus
responsible for regulation (6). Multiple sys-
tems affect transcription by rmn P1 promot-
ers. Positive effectors include (i) a promoter
upstream (UP) element that increases rrn
P1 activity by binding the « subunit of
RNA polymerase (RNAP) (7-9); (ii) a
transcription factor, FIS, that binds to sites
upstream of the UP element and interacts
directly with RNAP (10, [1); and (iii) an-
titermination factors that bind to the BoxA
region in the precursor RNA downstream of
rrn P2 and prevent premature transcription
termination (I2). In addition, a negative
effector, ppGpp, inhibits transcription from
both rm P1 and rm P2 during amino acid
starvation, a phenomenon referred to as the
stringent response (13-15). Overlapping
mechanisms influencing TRNA  transcrip-
tion have complicated efforts to identify the
major system (or systems) contributing to
growth rate-dependent control.
Previously, we evaluated the contribu-
tions of the above mechanisms to growth
rate—dependent control of the mnB P1 pro-
moter, using promoter or gene mutations to
systematically eliminate specific input sig-
nals. Transcription from a “minimal” (core)
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rmB P1 promoter (lacking rmB sequences
upstream of —41 with respect to the tran-
scription start site, +1) (Fig. 1B) was
growth rate—dependent even in strains un-
able to make ppGpp (16), which implied
that some other mechanism—independent
of FIS, the UP element, antitermination
factors, or ppGpp—is responsible for growth
rate—dependent regulation. However, there
was no evidence for the binding of po-
tential regulatory proteins (other than
RNAP) to the rmB P1 core promoter re-
gion (17). Therefore, we considered the
possibility that the concentration of nucle-
oside triphosphates (NTPs), the substrates
of RNAP, might serve as a signal that dif-
ferentiates rm P1 from other promoters in a
manner that changes with growth rate.
Requirement for high concentrations of
the initiating NTP for efficient rrn P1
transcription in vitro and in vivo. We used
in vitro transcription to test whether vary-
ing the concentrations of NTPs, singly or in
combination, would affect transcription
from rm P1 promoters differently than from
control promoters. Control (RNA 1 or
lacUV5) or rmB P1 promoters were fused to
the plasmid vector at position +1 such that
each promoter made a transcript of identi-
cal sequence (Fig. 2A) (18, 19). When the
concentration of adenosine triphosphate
{ATP, the initiating NTP for each promot-
er) was varied and the concentrations of
guanosine, uridine, and cytidine triphos-
phate (GTP, UTP, and CTP) were kept
constant, maximal transcription from rmB
P1 required about 10 times as much ATP as
did transcription from control promoters
(Fig. 2, B and C) (19). The absolute con-
centration of ATP required for maximal
transcription from rmB P1 varied with solu-
tion conditions, increasing with increasing
salt concentration or on linear (rather than
supercoiled) templates. However, the ATP
concentration needed for maximal transcrip-
tion from rmB P1 was greater than for con-
trol promoters under all solution conditions
(20). Varying the amounts of the other
NTPs, individually or together, had no se-
lective effect on rmB P1 activity (19).

Six of the seven E. coli rm P1 promoters
begin transcription with ATP, but the rmD
P1 transcript starts with GTP (Fig. 1B).
Maximal transcription of rmD P1 in vitro
was not selectively affected by varying
ATP, UTP, or CTP concentrations, but was
highly sensitive to GTP concentration (Fig.
2D) (18, 19). Moreover, substitution of G
for A at position +1 of rmB P1 also resulted
in a requirement for high GTP, rather than
ATP, concentrations (19). Thus, the con-
centration of the initiating NTP, rather
than ATP concentration per se, affects the
transcription efficiency of rm P1 promoters
in vitro.

To address whether variation in NTP
concentration could account for rm P1 reg-
ulation in vivo, we cultured cells in media
supporting different growth rates and ana-
lyzed them for NTP content by reversed-
phase ion pair high-pressure liquid chroma-
tography (HPLC) (21). ATP and GTP con-
centrations increased by a factor of about 4
when growth rate increased by a factor of 2
(Fig. 3A) (22), correlating with the in-
crease in rm P1 promoter activity observed
from an rmB P1 promoter fused to lacZ in
the same cells (Fig. 3B).

This correlation suggested but did not
prove that the increase in purine nucleo-
tide concentrations with growth rate is
responsible for regulation of rm Pl tran-
scription in vivo, because NTP concentra-
tions could be saturating even at low
growth rates (22). Therefore, we uncou-
pled purine NTP concentrations from
growth rate by partially starving cells for
pyrimidines, which reduces UTP and CTP
concentrations (and growth rate) but in-
creases the amounts of ATP and GTP
(23-25). Under these conditions, rmB P1
transcription increased with the ATP con-
centration rather than with the growth
rate (Fig. 3, C and D). This observation
indicated that the concentrations of pu-
rine NTPs, rather than the growth rate per
se, regulate m Pl promoter activity in
vivo.

Stabilization of rrn P1 open complexes
by the initiating NTP. During transcription

Fig. 1. (A) The rmB pro- A Pq po

moter region. Tran- P "”UP

scripts frgm promoters FIS sites element element BoxA
P1 and P2 are repre- m m | 35 10 .35 -10

sen_ted by arrows. DI_\JA B e Ve - i— - (M—
regions corresponding  _150 60 -40 +1 60 -40 +1

to —10 and -35 hexam- -
ers (the core promoter), L

UP elements, FIS bind- B +1

ing sites, and the BoxA rmB P1 TCCTCITGTCAGGCCGGAATAACTCCCTATAATGCGCCACCACTGAC
antitermination  region +1

are indicated. (B) P1 D P1  AATACTTGTGCAAAAAATTGGGATCCCTATAATGCGCCTCCGTTGAG

core promoter sequenc-

es (-41 to +6) from the rrnB and rrnD operons. The —10 and -35 hexamers and the transcription start

sites are underlined.
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initiation, RNAP (R) forms a binary
“closed” complex (RP,) with the promoter
(P), isomerizes to form an “open” complex
(RP,) in which the double-stranded DNA
in the vicinity of the transcription start site
is melted, and ultimately binds the initiat-
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ATP ]
B
rmB P1—= | S - - RNA |
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Fig. 2. Effect of ATP or GTP concentration on
transcription of rrn P1 promoters in vitro. (A) Plas-
mid DNA templates containing different promot-
ers made the same 170-nucleotide (nt) transcript
terminated at rrnB T1 (18). (B) Transcription was
performed at increasing ATP concentrations with
constant GTP, UTP, and CTP (78), using either an
B P1 promoter template (left panel) or a control
promoter template (RNA |, right panel). The 170-nt
transcripts are indicated. The 108-nt RNA | tran-
script, originating from the plasmid’s native RNA |
promoter, is visible below the experimental tran-
script (7, 18). (C) The relative amounts of transcript
from Fig. 2B (rnB P1, @; cloned RNA | promoter,
O) at each ATP concentration are expressed as a
fraction of the plateau value [1.00 (78)]. (D) Tran-
scription from rrnD P1 (18, 19) in the presence of
varying GTP and constant ATP, UTP, and CTP
(®), or with varying ATP and constant GTP, UTP,
and CTP (O). Data from representative experi-
ments are shown in (B) to (D); each experiment
was performed at least three times, and differenc-
es in the apparent K, for ATP or GTP were <5%.
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ing nucleotide: R + P = RP_. = RP, =
RP,;1p (26). At most characterized promot-
ers, RP, is relatively stable, with a half-life
of 30 min to several hours under typical
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Fig. 3. rrnB P1 promoter activity correlates with
ATP concentration in vivo. (A) ATP and GTP were
measured by HPLC from cultures of RLG3492
with different growth rates (doublings per hour)
(21). The concentration of ATP (@) differed from
the concentration of GTP (O) at each growth rate,
but the relative increase in concentration between
the lowest and highest growth rates was almost
identical for the two nuclectides. (B) rrnB P1 pro-
moter activity [B-galactosidase units from an rrnB8
P1 promoter—facZ fusion (27)} in the cultures used
in (A). (C) ATP concentration and (D) rrnB8 P1 pro-
moter activity in RLG3493, a car::Tn10 derivative
of RLG3492, at different growth rates generated
by varying the degree of pyrimidine limitation,
which uncouples purine NTP concentration from
growth rate (25). Symbols in each panel represent
averages of three different samples of two differ-
ent cultures for each growth rate.
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Fig. 4. Stabilization of rm P1 promoter—-RNAP
complexes by initiating NTPs in vitro. Complexes
of rnB P1 (A) or rrnD P1 (B) were formed with
RNAP in the presence of ATP (¥) or GTP (O), or in
the absence of NTPs (control; @). Symbols repre-
sent the fraction of complexes remaining at times
after heparin addition (32). Arepresentative exper-
iment is shown, but differences between ob-
served half-lives in the presence or absence of the
initiating NTPs were highly reproducible (=10%
error).
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conditions in vitro (27). However, open
complexes at rmn P1 promoters are excep-
tionally unstable (28-30), with half-lives
generally one to two orders of magnitude
shorter than those at more typical promot-
ers under comparable solution conditions.
At rm P1 promoters, initiating NTP con-
centration dependence and open complex
stability are strongly affected by salt con-
centration and template conformation in
vitro (20, 28-30), which suggests that the
requirement for high NTP concentrations
might be related to complex instability.
Direct evidence for a role of NTPs in
stabilizing rm P1 promoter~RNAP com-
plexes was obtained by measuring the half-
life of complexes in the presence and ab-
sence of the initiating NTP (Fig. 4) (31,
32). At rmB PIl, which initiates with
ATP, 2 mM ATP increased the half-life of
the complex by a factor of about 3 (Fig.
4A), whereas GTP had little or no effect.
At rrnD P1, which initiates with GTP, 2
mM GTP (but not ATP) increased the
half-life, again by a factor of about 3 (Fig.

3500

4B). These data suggest that the initiating
NTP concentration influences the frac-
tion of rm P1 promoters present as open
complexes, thereby affecting the amount
of transcription.

Mutations that alter growth rate—depen-
dent regulation were identified in the rmB
P1 promoter (16) and in rpoB and 7poC,
encoding the B and B’ subunits of RNAP
(33). The properties of complexes formed
with the mutant promoter or the mutant
RNAPs confirmed the importance of NTP
concentration and open complex stability
for rm P1 regulation in vivo. A single base
substitution at position —1 in rrB P1 (mnB
P1 C-1T) that resulted in high transcrip-
tion at all growth rates (Fig. 5A) (16) dras-
tically altered the ATP concentration de-
pendence of the promoter: Maximal tran-
scription of the mutant promoter required
about one-tenth the amount of ATP re-
quired for maximal transcription of the
wild-type promoter in vitro (Fig. 5B) (34).
Furthermore, the complex containing the
mutant promoter was about 5.5 times as
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Fig. 5. Effects of promoter or RNAP mutations on growth rate—dependent regulation, NTP concentra-
tion dependence, and open complex stability. (A) Activities (in B-galactosidase units) of the rrB P1 (- 46,
+1) wild type (RLG2663) or C-1T mutant (RLG2665) promoters were measured using promoter-facZ
fusions in cultures grown at different growth rates (76). (B) In vitro transcription of wild-type or C-1T
mutant rrnB P1 promoters with wild-type RNAP at different ATP concentrations (34). Promoter activities
are expressed as fractions of the plateau values (1.0). (C) Decay of open complexes containing wild-type
RNAP or wild-type or C-1T mutant rmnB8 P71 promoters. Decay curves depict the fraction of open
complexes remaining at different times after heparin addition, as described for Fig. 4 (32, 35). (D) Growth
rate—dependent regulation was measured as in (A), using strains with wild-type RNAP (RLG3950) or
rpoCA215-220 mutant RNAP (RLG3951), and an rmB P1 (-61 to +50) promoter—facZ fusion (33).
Because the promoter-lacZ fusions used to monitor transcription activity are different in (A) and (D), the
absolute activities should not be compared directly (8). (E) In vitro transcription with wild-type or
poCA215-220 RNAPs and the wild-type promoter at different ATP concentrations (34). (F) Decay of
open complexes containing wild-type rrB P1 promoter (-61 to +50) and wild-type or rooCA215-220
mutant RNAP. The lower salt concentration used in (F) resulted in a slightly slower decay rate for the
promoter—wild-type RNAP complex than was observed in (C) (35).
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stable as the wild-type complex (Fig. 5C)
(34). The simplest interpretation of these
results is that the mutation allows high rmB
P1 activity at low growth rates, because the
promoter is transcribed efficiently even at
low ATP concentrations.

A deletion of amino acids 215 to 220 in
the RNAP B’ subunit (rpoCAZ215-220)
resulted in low activity of rrnB P1 promot-
ers lacking FIS sites at all growth rates
(Fig. 5D) (33). Relative to wild-type
RNAP, the mutant RNAP required 8 to
11 times as much ATP for comparable
rmB Pl transcription in vitro (Fig. 5E),
but not for RNA [ transcription (33).
Moreover, B Pl-mutant RNAP com-
plexes were about 8% as stable as wild-
type complexes (Fig. 5F) (35). These data
suggest that mn Pl expression in
rpoCA215-220 mutant strains is altered
because the NTP concentrations present
even at the highest growth rates are insuf-
ficient to stabilize rrn P1 open complexes.

Model for homeostatic control of ribo-
some synthesis by NTP sensing. These
data support a model (Fig. 6) in which
purine NTP pools control the rate of IRNA
transcription—and thereby the rate of ribo-
some synthesis and the amount of transla-
tion—by stabilizing »n P1-RNAP com-
plexes in vivo. Intracellular ATP and GTP
concentrations ate determined by their
rates of synthesis and consumption; synthe-
sis rates are determined by nutritional con-
ditions (which influence the efficiency of
fermentation and respiration), and con-
sumption is determined to a large extent by
the amount of protein synthesis [ATP for
amino acid biosynthesis and tRNA charg-
ing, GTP for tRNA binding to the ribosome
and ribosome translocation (36)]. Transient
imbalances between NTP generation and
consumption thus create a feedback signal
to readjust the rRNA synthesis rate to the
translation rate and the nutritional state of

the cell.

Fig. 6. Model for homeostatic reg-
ultation of rRNA transcription and ri-
bosome synthesis by the initiating
NTP concentration. ATP and GTP,
whose concentrations vary with
growth rate (nutrient availability),
regulate rRNA transcription by sta-
bilizing RNAP (R)-rrn P1 promoter
(P) open complexes (RP.). rRNA
transcription determines the rate of
ribosome synthesis and therefore
the amount of translation. ATP and
GTP are consumed during the pro-
cess of translation, resulting in a
feedback signal affecting rrn P1
transcription. Initiating NTP pools
reflect the balance between pro-
tein synthesis rates and nutritional
conditions.
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Many previous observations are consis-
tent with the predictions of this model.
Conditions that inhibit translation—for ex-
ample, chloramphenicol treatment or mu-
tations in the translation apparatus, which
would be expected to reduce the drain on
purine NTP pools—result in overproduc-
tion of rRNA (37, 38). Conversely, condi-
tional mutants of the glycolytic enzyme
fructose 1,6-diphosphate aldolase have re-
duced amounts of ATP at the restrictive
temperature, which might explain the ob-
served transcription inhibition of rm Pl
promoters (39).

The model also provides a molecular
explanation for the feedback control of
rRNA synthesis previously observed. Over-
all rtRNA expression remains relatively con-
stant in situations that might be expected
to perturb it (3). For example, total rRNA
transcription remains roughly the same
when cells contain as few as 4 or as many as
21 functional rRNA operons (38, 40),
when rn antitermination is defective be-
cause of nus mutations (41), or when rrn P1
transcription activation is defective because
of fis or rpoA mutations (7, 10). In addition,
transcription from rrn Pl promoters is de-
creased when cells overproduce rRNA from
a AP, promoter (42). The adjustments in
rrn P1 promoter activity in each of these
situations can be attributed to over- or un-
derproduction of translating ribosomes, re-
sulting in changes in ATP and GTP pools.

Mechanism of NTP sensing by rrm P1
promoters. The effect of purine NTP con-
centration on rm Pl promoter activity in-
volves stabilization of the RNAP—m P1
complex. NTPs are the substrates of tran-
scription, but we emphasize that the initi-
ating NTP affects the rm P1 promoter com-
plex before catalysis occurs. The initiating
NTP most likely functions as a ligand that
binds to the open complex, presumably at
the active site, leading to an increase in the
observed half-life of the complex and a
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greater chance for productive transcription
before the complex dissociates (31). The
higher the NTP concentration, the greater
the fraction of promoters in open complex-
es with RNAP, and the higher the extent of
transcription.

The promoter sequences responsible for
the instability of the rn P1 open complex
are not understood. The determinants are
likely to be complex, involving multiple
aspects of promoter architecture. The se-
quence just upstream of the transcription
start site is a likely determinant, because the
C — T change at position —1 (43) increased
the stability of the B P1 open complex
(Fig. 5C). It is striking that all seven rrn P1
promotets initiate transcription at the un-
usual distance of 9 base pairs (bp) from the
—-10 hexamer and contain the least pre-
ferred NTP for initiation, CTP, at the pre-
ferred positions 7 and 8 bp from the -10
hexamer (3, 44). However, the C-1T mu-
tation increased stability without altering
the transcription start site (13), indicating
that start site position alone apparently is
insufficient to account for this instability.

Other promoters (including the other
rn P1 promoters and many tRNA promot-
ers) may also be controlled by variation in
initiating NTP concentration, because they
are subject to growth rate-dependent regu-
lation, make unstable open complexes, or
share other characteristics with mnB P1
(38, 45). Initiating NTP concentrations po-
tentially could affect any promoter whose
expression is limited by the stability of its
open complex with RNAP and is poised
such that physiologically relevant NTP
concentrations could affect its lifetime.
Regulation of rRNA transcription by purine
NTP concentration apparently is not limit-
ed to bacteria: ATP and GTP pools control
mammalian tRNA synthesis as well, al-
though the mechanism responsible is not
understood: (46).

Nucleotide concentrations affect the ex-
pression of many operons by mechanisms
different from that reported here for rm P1
promoters. For example, changes in
amounts of pyrimidine NTPs can alter ex-
pression of pyrimidine biosynthesis and sal-
vage operons by affecting start site selec-
tion, reiterative transcription, transcription
elongation, transcription attenuation, and
translation initiation efficiency (24, 44,
47). Adenine nucleotides modulate tran-
scription by phosphorylation or dephospho-
rylation of components of transcription
complexes (48). Adenine nucleotides have
also been proposed to affect anti—o factor
function and thereby control transcription
by at least two RNAP holoenzymes in Ba-
cillus subtilis (49).

Overlap in rRNA regulation mecha-
nisms. The NTP-sensing mechanism need
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not account for all aspects of rRNA regula-
tion. Ribosomal RNA promoters integrate
multiple input signals: RNAP a and o sub-
unit interactions with promoter DNA, FIS,
ppGpp, antitermination factors, and rrn P2
all contribute to tRNA synthesis in vivo
(3), and regulatory mechanisms affecting
rRNA expression may partially overlap. For
example, deletion of the fis gene does not
decrease overall tRNA transcription or al-
ter growth rate-dependent regulation, be-
cause there are compensating increases in
rrn P1 core promoter activity, presumably
through feedback signaling involving the
NTP-sensing mechanism described above
(10). Conversely, RNAP mutations (such
as 1poCA215-220; Fig. 5) that decrease rm
P1 core promoter activity are compensated
for, in part, by FIS: FIS activates the B’
mutant RNAP more than wild-type RNAP
and restores growth rate—dependent regula-
tion (33, 50), because FIS concentrations
vary with nutritional conditions (17, 51).

Overlapping regulatory mechanisms ap-
pear to be an intrinsic feature of tRNA
synthesis, perhaps because of the central
role played by tRNA transcription in cell
physiology. Additional systems may also
contribute to rRNA regulation, either inde-
pendently or by influencing the NTP-sens-
ing or FIS-dependent activation mecha-
nisms. In fact, any condition that alters rm
P1 promoter—-RNAP stability could poten-
tially play a role in rRNA regulation (52).
For example, the mediator of stringent con-
trol, ppGpp, which is produced in large
amounts after amino acid starvation, inhib-
its transcription by decreasing the half-life
of the rm P1 open complex (19, 30, 53),
perhaps making the complex unable to be
“rescued” by normal intracellular NTP con-
centrations. ppGpp is dispensable for
growth rate—dependent control (16, 54),
but even the low concentrations of ppGpp
that are present during steady-state growth
could conceivably supplement the NTP-
sensing mechanism.

Models for the control of tRNA synthe-
sis involving substrate limitation were con-
sidered, and discarded, previously (55, 56).
In particular, after an upshift it was found
that both NTP pools and tRNA transcrip-
tion ultimately reached higher steady-state
levels, but NTP concentrations dropped
transiently while stable RNA synthesis in-
creased almost immediately (56). These
data were interpreted to mean that NTP
concentrations do not correlate with rRNA
transcription rates. The apparent conflict
with the NTP-sensing model proposed here
might reflect the contribution of additional
mechanisms to regulation during growth
transitions. Consistent with this hypothesis,
mn P2—derived transcripts are responsible
for most TRNA transcription immediately
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after an upshift, and Pl-derived transcripts
become dominant only after about 30 min
(57). Because transcription from the rmB
P2 promoter, which initiates with several C
residues (58), is insensitive to reduced CTP
concentrations in vitro (19), rrn P2 promot-
er activity could account for the reported
transient inverse correlation between NTDP
concentrations and tfRNA synthesis during
an upshift. It is also possible that the in-
crease in rRNA transcription that occurs
immediately after upshift could result, in
part, from loss of inhibition by ppGpp, be-
cause ppGpp concentrations drop quickly
after shifts before attaining new steady-state
levels (59).

In summary, the sequence of a promoter
determines the concentration of the initiat-
ing NTP required for maximal transcription
efficiency. At rn Pl promoters, unstable
open complexes serve as sensors of the con-
centration of the initiating NTP (ATP or
GTP). Purine NTP concentrations reflect
the nutritional state as well as the transla-
tional activity of thie cell, and they satisfy the
role of a feedback effector of rRNA tran-
scription. NTP sensing thus provides a mo-
lecular explanation for the growth rate—de-
pendent regulation that is observed even in
the absence of all other systems known to
affect tRNA transcription.
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