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Caspases are a family of cysteine proteases implicated in the biochemical and mor- cleavage of Bcl-2 by caspase-3 in vitro 
phological changes that occur during apoptosis (programmed cell death). The loop (1 1). However, Asp31 itself apparently 
domain of Bcl-2 is cleaved at Asp34 by caspase-3 (CPP32) in vitro, in cells overexpressing does not serve as a cleavage site because 
caspase-3, and after induction of apoptosis by Fas ligation and interleukin9 withdrawal. this site is preserved in the loop deletion 
The carboxyl-terminal Bcl-2 cleavage product triggered cell death and accelerated mutant Aloop, which is not cleaved. (De- 
Sindbis virus-induced apoptosis, which was dependent on the BH3 homology and letion of the loop region reconstitutes 
transmembrane domains of Bcl-2. Inhibitor studies indicated that cleavage of Bcl-2 may Ala32.) The Asp residues- at  P1 and P4 in 
further activate downstream caspases and contribute to amplification of the caspase human Bcl-2 are also conserved in the rat 
cascade. Cleavage-resistant mutants of Bcl-2 had increased protection from interleu- and murine Bcl-2 proteins. 
kin4 withdrawal and Sindbis virus-induced apoptosis. Thus, cleavage of Bcl-2 by To determine whether Bcl-2 is cleaved 
caspases may ensure the inevitability of cell death. inside cells, we cotransfected COS cells 

with plasmids expressing Bcl-2 and 
caspase-3. Approximately 50% of the 
Bcl-2 protein was cleaved in the presence 

Bcl-2 is an integral intracellular mem- which suggested that the caspase cleavage of caspase-3 (Fig. 1B). Similar to results 
brane protein that inhibits programmed site is localized within the loop. Two po- obtained in vitro, mutation of Asp3' or 
cell death induced by multiple insults in a tential caspase cleavage sites occur within Asp34 abolished proteolysis in transfected 
wide variety of cell types (1 ). Both bio- the loop at positions 34 and 64. Mutation cells, whereas mutation of Asp64 had no 
chemical and genetic evidence indicates of Asp34 to Ala (D34A) abolished cleav- effect. Cotransfection of the baculovirus 
that Bcl-2 family members can regulate age by caspase-3 in vitro, whereas muta- caspase inhibitor P35 abolished proteolysis 
cell death induced by caspases (2). A tion of Asp64 to Ala (D64A) had no effect of Bcl-2 (Fig. lB), which indicates that 
number of substrates for the caspase pro- (Fig. 1A). Consistent with a cleavage site the transfected caspase-3, or potentially 
teases have now been identified, including following Asp34 in the sequence Asp31- other cellular proteases activated by 
protein kinases (3), the retinoblastoma 
protein ( 4 ) ,  cytoskeletal proteins ( 5 ) ,  and 
several autoantigens (6). Cleavage of A 
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during apoptosis (7). In addition, caspases - - - - AN34 

cleave the proenzyme precursors to pro- 19.8- 

duce the active subunits of caspases them- 
selves (8). Here, we investigated the pos- ~nti- as ~b - + + - + - t CEM-Bcl-2 + DEVD 
sibility that Bcl-2 could also serve as a 8 80 

+ CEM + DEVD 
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treatment with active caspase-3 produced --E +kc2 
a 23-kD proteolytic fragment of Bcl-2 (Fig. o 5 10 15 20 25 + ANN o to 20 30 i o  
1A). However, a mutant of Bcl-2 (9) that ?'hm (h) rime (h) 

lacks the loop acids 32 Fig. 1. Bcl-2 is cleaved by caspases both in vitro and in intact cells. (A) 35S-labeled in vitro translated 
80) was not susceptible to proteolysis, Bcl-2 and the indicated Bcl-2 mutants were digested with purified recombinant caspase-3 and 
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caspase-3, are responsible for cleaving 
Bcl-2 in intact cells. A larger fraction of 
Bcl-2 is cleaved by caspases in cells rela- 
tive to in vitro assays, raising the possibil- 
ity that protein modification such as phos- 
phorylation may modulate the cleavage 
event (1 2 ) .  Alternativelv. other cell fac- . , , , 

tors may facilitate cleavage of Bcl-2. Sim- 
ilar to Bcl-2, Bcl-xL is also cleaved in the 
loop domain by caspases in apoptotic cells 
(1 1). . . 

To determine whether endogenous 
Bcl-2 was cleaved by endogenous caspases 
after a death stimulus, we examined prote- 
olysis of Bcl-2 during Fas-induced apoptosis, 
a scenario where Bcl-2 is an inefficient 
death inhibitor (13). Treatment of Jurkat 
cells with antibody to Fas induced a cleav- 
age product of endogenous Bcl-2 that comi- 
grated with cleaved Bcl-2 produced by di- 
gestion of Jurkat cell lysates with recombi- 
nant caspase-3 (Fig. ID). Jurkat cells treat- 
ed with a caspase inhibitor blocked Fas- 
induced cleavage of Bcl-2 and significantly 
delayed cell death, indicating that caspases 
are responsible for cleaving Bcl-2 after Fas 
ligation (Fig. 1, C and D). Likewise, both 
endogenous and overexpressed Bcl-2 were 
cleaved after activation of the Fas pathway 
in CEM cells (Fig. 1E). Compared with the 
potency of a caspase inhibitor, stably ex- 
pressed Bcl-2 only transiently delayed CEM 
cell death (Fig. IF). 

Cleavage of Bcl-2 by caspases could 
serve to inactivate the antiapoptotic activ- 
ity of Bcl-2 during cell death. Alternatively, 
the cleaved product of Bcl-2 may acquire a 
new function. To test the function of 
cleaved Bcl-2, we expressed the NH2-termi- 
nal deletion mutant of Bcl-2, AN34, by 
means of the Sindbis virus vector system 
(14). In contrast to wild-type Bcl-2, which 
(relative to controls) protected cells from 
cell death, deletion of the NH2-terminal 34 
amino acids of Bcl-2 accelerated cell death 
more than did reverse orientation of AN34 
or a chloramphenicol acetyltransferase 
(CAT) control (Fig. 2). Similar accelera- 
tion of death was observed with Bax and 
Bak (14). Thus, cleavage of Bcl-2 by 
caspases can unleash a latent proapoptotic 
activity of Bcl-2. 

To further test the proapoptotic activ- 
ity of the cleavage product, we transfected 
a plasmid expressing the NH2-terminal 
deletion mutant of Bcl-2 into BHK (baby 
hamster kidney) cells. Although a detect- 
able reduction in cell viability by wild- 
type Bcl-2 was routinely observed, Bcl-2 
AN34 reduced cell viability more than did 
wild-type Bcl-2 over the full range of 
DNA concentrations (Fig. 3A). In a lucif- 
erase assay, the AN34 mutant exhibited 
proapoptotic activity similar to that ob- 
served after transfection with a Bax ex- 

Fig. 2. Deletion of the NH,-terminal 100 
34 amino acids of Bcl-2 converts 90 
Bcl-2 into a proapoptotic protein. - e0 -x- Mock 
Cell viability after infection of BHK C 70 +  loop 
cells with recombinant Sindbis virus 2 60 U D34A 
vectors expressing the indicated So -Ar wtBcl-2 
proteins was determined by trypan 
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blue exclusion, as described (14) -0- CAT 

(wt. wild type). Viabilities are pre- a 23; * AN34 
+Bax 

sented as the mean 2 SD for all 
time points in three independent 
experiments. lmmunoblot analysis 0 
confirmed expression of Bcl-2 fam- 0 10 20 30 40 50 

ily members (7 1). Time post infection (h) 

pression plasmid (12.6% and 8.3% viabil- 
ity, respectively) (Fig. 3B, solid bars). The 
baculovirus caspase inhibitor P35 inhibit- 
ed cell death induced by AN34 and Bax, 
whereas cotransfection with the poxvirus 
caspase inhibitor CrmA did not protect 
cells from AN34-induced cell death and 
modestly protected them from Bax (Fig. 
3B). These results suggest that the proapo- 
ptotic activity of AN34 lies upstream of at 
least some caspases, implying that AN34 
facilitates activation of additional pro- 
teases leading to cell death similar to Bax. 

To explore the mechanism by which 
AN34 kills cells, we investigated the im- 
portance of the transmembrane domain 
and the BH3 homology domain. Deletion 
of the transmembrane domain after resi- 
due 219 abolished the proapoptotic activ- 
ity of AN34, indicating that proper sub- 
cellular localization is important for cell 
killing (Fig. 3C). Although Bax may be 
able to induce death by a mechanism in- 
dependent of BH3, the BH3 domain ap- 
pears to contribute to the proapoptotic 
activity of Bak, Bax, and other BH3-con- 
taining proteins (15). This domain is also 
conserved in Bcl-2 and Bcl-xL, where 

there is conflicting evidence for its role in 
blocking cell death (16). Mutation of the 
core sequence (Gly101-Asp102-Asp103 + 
Ala101-Ala102-Ala103) or two flanking hy- 
drophobic residues (Leug7 + Ala and 
Phe104 + Ala) of BH3 abolished the pro- 
apoptotic activity of Bcl-2 AN34 (Fig. 
3C). The expression of AN34 in trans- 
fected cells was consistently reduced rela- 
tive to that of wild-type Bcl-2 or other 
Bcl-2 mutants, presumably because of its 
proapoptotic activity (Fig. 3D) (1 1 ). 

The loop region of Bcl-2 and Bcl-xL 
contains a regulatory domain that impairs 
antiapoptotic function (9). Deletion of 
the loop domain of Bcl-2 converts Bcl-2 
into a more potent inhibitor of growth 
factor withdrawal and anti-immunoglobu- 
lin M-induced apoptosis (9). The en- 
hanced activity of the loop deletion mu- 
tant may be explained by the inability of 
this mutant to be cleaved by caspases (see 
Fig. lA),  thus preventing activation of the 
executioner function of Bcl-2. To explore 
the possibility that cleavage of the loop 
region is important for regulating cell 
death after a death stimulus, we stably 
transfected cleavage-resistant mutants of 

Fig. 3. Bcl-2 AN34-induced death of A c 90 
transfected cells requires the BH3 and 
transmembrane domains of Bcl-2 and - 80 

is blocked by P35. (A) BHK cells were 70 

transfected as in Fig. 1B with increas- 
ing concentrations of wild-type Bcl-2 or 
the AN34 mutant, and cell viabilities = 
were determined by trypan blue exclu- Q 40 

6 40 

sion for three independent experiments 30 30 - - - -  
(mean + SD). (B) BHK cells were co- o 0.25 0.5 0.75 I _ r L ~ C L D  

G 3 z c  -'02n 
transfected with 2 pg of each expres- Trandected DNA (wg) o m . -  u& 
sion plasmid and 0.5 pg of luciferase Bg,oo 

' 
AN34 ' BcI-2 

reporter plasmid (GL2 control, Pro- ; D : A v ,  N ~ ~ 3 4  
mega) plus the required amount of 80 0 E z p E  0 

pSG5 for a total of 4.5 pg (using lipo- 2 60 9 5 1 ~ 5 ~  
28 3- 

fectamine). ~uciferase activity was as- 40 - 
sayed 24 hours later and compared % ---m 

19 4- 
with the luciferase reporter (+ 4 pg of s 
pSG5). (C) Cells were transfected with 
0.5 to 1.0 pg of the indicated con- 
structs (see text) and viabilities were determined as for (A). (D) Transfected cells described in (C) were 
immunoblotted with a monoclonal antibody to Bcl-2 (D. Mason). 
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