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NDRI,  a Pathogen-Induced Component 
Required for Arabidopsis Disease Resistance 

Karen S. Century," Allan D. Shapiro,? Peter P. Repetti, 
Douglas Dahl beck, Eric Holu b, Brian J. Staskawicz* 

Plant disease resistance (R) genes confer an ability to resist infection by pathogens 
expressing specific corresponding avirulence genes. In Arabidopsis thaliana, resistance 
to both bacterial and fungal pathogens, mediated by several R gene products, requires 
the NDRl gene. Positional cloning was used to isolate NDRI,  which encodes a660-base 
pair open reading frame. The predicted 219-amino acid sequence suggests that NDRl 
may be associated with a membrane. NDRl expression is induced in response to 
pathogen challenge and may function to integrate various pathogen recognition signals. 

G e n e t i c  analyses of disease resistance in 
plants show that resistance to pathogens is 
often highly specific, requiring single corre- 
sponding genetic loci in both the plant and 
the pathogen (1).  Disease resistance genes 
cloned from diverse plant species such as to- 
mato, rice, and Arabidopsis thaliana encode 
nroteins that share one or more similar motifs 

from Arabidopsis, a gene that functions in 
common among several resistance responses. 

T h e  NDRl locus is required for resis- 
tance to both the  bacterial pathogen 
Pseudomonas syringae pv, tomato (Pst) and 
the  fungal pathogen Peronospora parasitica 
(4). Mutation of NDRl causes susceptibility 
to numerous strains of these n a t h o ~ e n s .  u 

(2). These motifs include leucine-rich repeat Thus, N D R l  represents a strong candidate 
regions (implicated in protein-protein inter- for a conserved signal transduction element 
actions) (S), nucleotide-binding sites, and ki- required for avirulence (avr) gene-specific 
nase domains, all of which nredict a role for disease resistance. NDRl is located o n  Ara- 
resistance genes as components in signal 
transduction pathways. These genes confer 
resistance to a variety of pathogens, including 
bacteria, fungi, viruses, and nematodes, which 
suggests a conserved mechanism of plant dis- 
ease resistance. Therefore, it is possible that 
the signal transductioll pathmys used by the 
different resistance gene products converge at 
some point. W e  report the cloning of NDRl 

bidopsis chromosolne three, in a n  -8.5-cen- 
timorgan (cM) interval between restriction 
fragment length polymorphisrn (RFLP) 
markers g6220 and g4711 (4) .  Fine-struc- 
ture mapping with RFLP and polymerase 
chain reaction (PCR)-based markers fur- 
ther delimited the  genomic region carrying 
NDRl (Fig. 1 A )  (5). A n  overlapping set of 
yeast artificial chromosome (YAC) clones 
spanning -1200 kb was constructed (Fig. 

K. S. Century, A. D. Shapiro, P. P Repettl, D. Dahbeck, B. 1 ~ )  (6)- Tn'o YAC clones, CIC3D12 a d  
J. Staskawcz, Department of Plant and Mcrobia Boogy, CIC7E1, together spanned N D R l ,  as deter- 
University of California, Berkeley, CA 94720-3102, USA lnined by r&ombination A plant- 
E. Houb, Plant Pathology and Weed Science Depart- 
ment, Horticulture Research Internatonal-Welesbourne, transformation competent library 
Warwckshre CV35 9EF, UK. from each of these two YAC clones was 

'Present address: B~ology Department, San Francisco generated, and a cosmid contig con- 
State Unversty, San Francsco, CA 94132, USA, structed (Fig. 1 C )  17). A n  a~nrox imate  1- . 
;.Present address: Department of Plant and Sol Scienc- kb  deletion was in the -1 
es, University of Delaware, Newark. DE 1971 7, USA. 
::To whom correspondence should be addressed. E-mail: fast-neutron-generated Inuta1lt (4)  
stask@nature.berkeley.edu cosrnid FH6 from the  CIC3D12 library was 

Table 1. Asexual sporuaton (measured as the mean number of sporang~ophores per cotyledon; 
maximum of 20 sporangiophores counted per cotyledon) by three incompatible isolates of Peronospora 
parasitica on Co-0, the mutant ndrl- 1, and two transformed lines of ndrl- 1. RPP resstance specificites 
for each isolate are indicated. The cotyledon assay used has been described previously (31). SEM, 
standard error of the mean; n, number of seedlings inoculated. 

Peronospora isolate 

Arabidopsis 
line Cala2- RPP2 Emwal -RPP4 Emoy2-RPP4 

Mean SEM (n) Mean SEM (n) Mean SEM (n) 

COI-0 0.18 0.07 (76) 4.01 0.28 (86) 5.94 0.40 (58) 
ndrl- 1 0.95 0.1 I (85) 10.54 0.57 (95) 14.66 0.60 (86) 
ndrl- 1 FH6 0.03 0.03 (87) 4.89 0.29 (128) 7.00 0.41 (93) 
ndrl-1 CB17 0.69 0.10 (100) 10.91 0.53 (100) 14.03 0.62 (87) 
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Fig. 1. Genetic mapping and positional cloning of NDRl. (A) Fine-structure RFLP map. Recombinant 
analysis delimited the genomic region containing NDRl to a section flanked by RFLP marker 
pCIT1240 and ARMS (Arabidopsis RFLP mapping set) marker 560B1 (5). (B) YAC contig. Genetic 
mapping of the insert ends from the YAC clones demonstrated that the contig spanned the NDRl 
locus (6). An RFLP marker (1 4E8LE) derived from one end of yUPl4E8 further narrowed the physical 
genomic region containing NDRl to a 0.68-cM interval. (C) Cosmid contig. Cosrnids derived from 
CIC3D12 were organized into an overlapping set that spanned NDR1. The ndrl-1 mutant was 
genetically transformed with these cosmids and tested for complementation by HR analysis (+, HR 
restored; -, no HR) (7). (D) DNA gel blot demonstrates an -1 -kb deletion in the mutant ndrl-1. A 
14-kb Eco RI Arabidopsis DNA fragment from cosmid FH6 was radiolabeled and used as a hybrid- 
ization probe against Hind Ill-digested Col-0, La-er, or ndrl- 1 genomic DNA. The ndrl- 1 lane shows 
the deletion of an -1-kb fragment containing a Hind I l l  site resulting in the larger 1.9-kb single 
fragment. 
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Fig. 2. Growth of avirulent Pst - 7 

38 A D K P K C S I Q N P P I P A L G K D P N S R D N T T L N P M V R C D N P  

strain DC3000 within cosmid-com- N  ̂
plemented ndrl-1 Arabidopsis. (A) '- 
Pst DC3000 (avrRpt2). (B) Pst $ 5- DC3000 (avrRpml). a, ndrl -1 mu- - 
tant; W, ndrl-1 transformed with 4- 

noncomplementing CB17 cosmid; ; 3 - 0, wild-type Col-0; and 0, ndrl-1 - 
transformed with complementing 5 '- 
FH6 cosmid. T, homozygous plant p 1 - 
lines were derived from selfing 2 0- 
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progeny of a single Col-0 ndrl- 0 2 4 0 2 4 
l/ndrl - 1 transformant heterozy- Days after inoculation 
gous for kanamycin resistance. 
Plants were inoculated by vacuum infiltration, and bacterial growth in leaves was monitored as de- 
scribed (27). CB17 cosmid does not contain NDRl ORF (Fig. 1C). Sample means and standard 
deviations are shown from a representative experiment. 
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Fig. 3. Primary structure of NDRl -predicted protein (28). Putative transmembrane domains are 
underlined. The entire NH,-terminal portion of the protein through amino acid (indicated by 
the arrow) is deleted in ndrl- 1, as well as a portion of the upstream DNA (GenBank accession number 
AF021346). Molecular alterations in ndrl-2 and ndrl-3 alleles convert TrplZ4 and Phe31, respective- 
ly, to premature stop codons and are indicated by asterisks. See the GenBank ently (www.mcbi. 
nlm.nih.gov/Entrer/nucleotide.html) for nucleotide sequence and base pairs altered in the mutant 
alleles. 

used as a 32P-labeled probe (Fig. ID). To 
determine if NDRl was contained in the 
deleted region, ndrl-1 plants were trans- 
formed with cosmids spanning the deletion 
and tested for complementation with a hy- 
persensitive response (HR) assay (7). Wild- 
type Col-0 plants react with an HR to P. 
syringae pv. maculicola (Psm) expressing am- 
Rpt2, whereas ndrl-1 mutant plants do not. 
Cosmids spanning the deleted region (Fig. 
1C) restored wild-type HR to Psm (amRpt2) 
in ndrl-1 plants. In planta bacterial growth 
analyses (Fig. 2) and cotyledon sporulation 
assays with P. parasitica (Table 1) demon- 
strated restored, heritable resistance in the 
complemented transformed plants. 

Sequencing of wild-type Col-0 genomic 
DNA revealed a single 660-base pair open 
reading frame (ORF) in the region 
spanned by the deletion in the ndrl-1 
mutant (8). Sequencing of the additional 
mutant alleles ndrl-2 and ndrl-3 (9) also 
revealed alterations in this ORF (Fig. 3). 
The ORF predicts a 219-amino acid gene 
product (Fig. 3 ) ,  which shows identity to 
one Arabidopsis expressed sequence tag 
(GenBank accession number T21313). 
This cDNA clone was obtained from the 
Arabidopsis Biological Resource Center 
and was used to probe RNA gel blots 
(Fig. 4). The size of the hybridizing RNA 
from wild-type Col-0 plants is in agree- 
ment with the size of the ORF, indicating 
that the full-length gene is contained in 
the single ORF without introns. The mes- 
sage is absent in ndrl-1 mutant plants 
(10). Accumulation of NDRl mRNA is 
up-regulated by both virulent and aviru- 
lent bacteria relative to the MgC1, control 
treatment in wild-type Col-0 plants (Fig. 
4A) and in mutants ndrl-2 and ndrl-3 
(10). Over a period of 48 hours, up-regu- 
lation of NDRl was seen as early as 4 
hours after inoculation, with maximal ex- 
pression at 8 hours (Fig. dB). Therefore, 
NDRl is a classically induced defense re- 
sponse gene which is genetically required 
for resistance. 

SBASE library (1 1) analysis of the 
NDR1-predicted amino acid sequence iden- 
tified two putative transmembrane domains 
similar (up to 85%) to 'membrane-spanning 
regions in proteins such as the 6K protein of 
Ockelbo virus (a Sindbis virus) and the ino- 
sit01 l,4,5-trisphosphate receptor protein 
from various species. In NDR1, the putative 
transmembrane domains span amino acids 
19 through 36 and 202 through 218 (Fig. 3). 
These similarities suggest that NDRl may be 
a membrane-associated protein; however, 
the subcellular location of NDRl is not 
known. 

BLAST searches (12) revealed limited 
similarity with two tobacco genes, hinl 
(13) and clone NG2 (14), which are cor- 
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Fig. 4. (A) RNA gel blot showing expression of NDRl A 
message in WT Col-0 Arabidopsis plants. Five-week-old C M V awB avrRp12 

plants grown under short-day conditions in a growth 
chamber were vacuum infiltrated with either a 10 mM + . = m r ( l  
MgCI, control or 1 x lo7 CFU/ml of Pst DC3000, Pst 
~ ~ 3 6 0 0  (avrB), or Pst DC3000 (avrRpt2). Plants were 
frozen in liquid nitrogen after an 8-hour induction period, 
and total RNA was extracted (Tri-Reagent, Sigma). 

18s 

related with the resistance response (15). 
Both hinl (13) and NDRl are induced by 
avirulent pathogens (Fig. 4). The signifi- 
cance of the similarities between ndrl and 
these two tobacco eenes remains to be 

Lanes: C, Col-0 uninduced; M, MgCI, induction control; 
V, virulent Pst DC3000 induction; avrB, avirulent Pst B 3 

- 
determined. 

NDRl is required for resistance to the 
bacterial pathogen Pst expressing avrB, avr- 
Rpt2, avrRpml, or avrPph3, as well as resis- 
tance to numerous isolates of the fungal 

DC3000 (avrB) induction; avrRpt2, avirulent Pst DC3000 
(avrRpt2). Gel blot analysis was done according to stan- 2.5- 
dard protocol (29) using Hybond-NX transfer membrane 2 
(Amersham) according to manufacturer's directions. The C 2 - 
blot was stripped and reprobed with pea 18s ribosomal .: 
DNA (30) as a control for loading. The blot shown is 1.5- 
representative of three experiments. (B) NDRl mRNA , 
accumulation after 8 hours in uninoculated tissue (a), E 1 - 
leaves infiltrated with MgCI, control (b), virulent DC3000 & 
(c), or avirulent DC3000 (avrRpt2) (d). Data was generat- 0.5- 
ed by combining the results from three separate RNA gel 
blots and was standardized for loading by comparing O 1  

pathogen Peronospora parasitica (4), but not 
for expression of the resistance gene RPSZ 
(16). Therefore, we propose that NDRl 
may encode a component in the signal 
transduction pathway downstream of initial 
pathogen recognition. Mutation of NDRl 
results in loss of resistance governed by 
several resistance genes. Because of their 

Uninoculated 
MgCI, 
DC3000 
DC3000(avrRpQ) T 

- 
a, 

T 
I 

specificity, it has 6een speculated that re- 
sistance gene products act as receptors for 
avirulence signals. NDRl may interact di- 
rectly with many specific receptors to trans- 
duce the elicitor signal, or it may serve as a 
transporter or receptor for an elicitor signal 
or secondary messenger. 

Several genes have been identified that 
are required for the activity of individual 
resistance genes in tomato and barley (17). 
However, NDRl and another Arabdopsis 
gene, EDSl (1 8), have been shown to be 
necessary for plant defense mediated by nu- 
merous resistance genes. That mutation of 
NDRl causes susceptibility to both bacteri- 
al and fungal pathogens supports a central 
role for NDRl in disease resistance. Further 
analysis of NDR1, such as identification of 
important domains, interacting proteins, 
and cellular localization, will help make 
significant progress toward the goal of char- 
acterizing a complete signal transduction 
pathway for plant disease resistance. 

with control probes for total RNA. A similar trend of RNA a b c d  

accumulation was seen in plants inoculated with DC3000 (avrB) in two separate experiments (10). 
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