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Multistep Control of Pituitary Organogenesis 
Hui Z. Sheng, Kenji Moriyama, Tsuyoshi Yamashita, Hung Li, 

S. Steven Potter, Kathleen A. Mahon, Heiner Westphal* 

Lhx3 and Lhx4 (Gsh4), two closely related LIM homeobox genes, determine formation 
of the pituitary gland in mice. Rathke's pouch is formed in two steps-first as a rudiment 
and later as a definitive pouch. Lhx3 and Lhx4 have redundant control over formation of 
the definitive pouch. Lhx3 controls a subsequent step of pituitary fate commitment. 
Thereafter, Lhx3 and Lhx4 together regulate proliferation and differentiation of pituitary- 
specific cell lineages. Thus, Lhx3 and Lhx4 dictate pituitary organ identity by controlling 
developmental decisions at multiple stages of organogenesis. 

Pituitary organogenesis is driven by a series 
of del~elopmental decis~ons colltrolled by 
transcription regulators. Pit-1 /GHF-1 ( 1-4) 
and prophet-1 ( 5 )  direct establishment of 
certain pituitary cell lineages [for review, 
see (6)]. Targeted mutation of the Lhs3 
gene revealed its role in the specification of 
most pituitary lineages (7). This study fo- 
cuses o n  earlier steps in pituitary organ 
formation. X'e analyze the  effects of 11~111 
lnutatiolls in Lks3 and Lhx4 ( a ) ,  a gene 

closely related to Lhs3 (8-1 1 ). and show 
that hot11 genes direct 'formation of the 
pituitary gland in mice. 

T h e  anterior and intermediate lobes of 
the  n i t ~ ~ i t a r v  are derived from the  oral ec- 
toderln that invaginates to  form Rathlte's 
pouch ( 1  2 ) .  Rathke's pouch gives rise to  a t  
least six pituitary-specific cell lineages (6 ,  
12) .  

Lhs3 and Lhx4 are expressed throughout 
the  inlraginating pouch a t  day 9.5 of gesta- 
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tion (E9.5) (Fig. 1, a and e). However, at assessed the ability of mutant primordia to immunocytochemistry. Transcripts for the 
E12.5, Lhx4 expression becomes restricted differentiate into organ-specific cell lin- a-glycoprotein subunit (GSU), Pit-I, 
to the future anterior lobe of the pituitary eages. Marker gene and protein expression growth hormone (GH), and thyroid-stimu- 
gland, whereas Lhx3 remains expressed in was assessed by in situ hybridization and lating hormone P subunit (TSHP) are 
the whole vouch (Fig. 1, b and f) .  At E15.5, 
Lhx4 expression diminishes; Lhx3 expres- 
sion is maintained (Fig. 1, c and g). In the 
adult pituitary, Lhx3 is expressed at a higher 
level than Lhx4 in the anterior and inter- 
mediate lobes (Fig. 1, d and h). 

Null mutations of either Lhx3 (7) or 
Lhx4 (see below) do not prevent formation 
of Rathke's pouch. We generated Lhx3-'-1 
Lhx4-I- mice carrying null mutations at 
both loci (3-1-4-1- for short). In these 
mutants the oral ectoderm invaginates nor- 
mally to form a pouch rudiment (Fig. 2d). 
The pouch rudiment grows no further after 
E12.5 (Fig. 2e), and by E15.5, as the carti- 
lage of the sphenoid bone grows across the 
floor of the brain. the entire rudiment is 
observed pressed back toward the oral cav- 
ity (Fig. 2f). 

After E9.5, normal pouch development 
proceeds from a rudiment to a definitive 
pouch that is characterized by an extension 
of the pouch into the brain cavity, where it 
abuts the infundibulum. In Lhx3-I- or 
Lhx4-1- mutants a definitive, albeit defec- 
tive, pouch forms (7, 13). Analysis of mu- 
tants for one gene that are heterozygous at 
the other locus revealed that one wild-type 
(WT) allele of either Lhx3 or Lhx4 is suffi- 
cient for formation of a definitive pouch 
(Fig. 2, g to 1). 

The next developmental step is commit- 
ment to the fate of the pituitary organ, 
which leads to formation of a proper pitu- 
itary structure and specification of pituitary 
lineages. This step is absolutely dependent 
on Lhx3 and is not realized in mutants that 
lack Lhx3 (Fig. 2, j to 1) [see also (7)]. 
Histological analysis of pituitary develop- 
ment in mutants with intermediate geno- 
types showed that Rathke's pouch gave rise 
to a pituitary structure in the presence of at 
least one copy of Lhx3 (Fig. 2, g to i) (1 3), 
but not in the absence of Lhx3 (7). Com- 
mitment to an organ fate also implies that 
the primordium will eventually give rise to 
organ-specific cell lineages. Therefore, we 
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Fig. 1. Expression of Lhx3 and Lhx4 in developing and adult pituitary. Sagittal sections of Rathke's 
pouch or coronal sections of adult pituitary were hybridized to Lhx3-specific (7) or Lhx4-specific (8) 
riboprobes. Antisense riboprobes were transcribed from Lhx3 or Lhx4 cDNA with RNA polymerase 
(Ambion) in the presence of uridine 5'-[33P]triphosphate (NEN). In situ hybridization was performed on 
tissue sections essentially as described (16). For photography, sections were stained with bisbenzimide 
(10 pg/ml) and simultaneously viewed in dark-field and ultraviolet illumination. R, Rathke's pouch; PL, 
posterior lobe; IL, intermediate lobe; AL, anterior lobe. Bars, 100 pm. 

Fig. 2. Ontogeny of anterior and intermediate lobes of pituitary development in WT mice (a to c), in 
3-/-4-/- double mutants (d to f ), and in mutants for one gene that are heterozygous at the other locus 
(g to I). A pouch rudiment is formed in the absence of both Lhx3 and Lhx4 genes. However, this 
rudiment fails to grow into a definitive pouch in the double mutant. Downgrowth of the infundibulum 
occurs in the absence of a definitive pouch. I ,  infundibulum; R, Rathke's pouch; pr, pouch rudiment. 
Sagittal sections of embryos were stained with hematoxylin and eosin. Lhx3 and Lhx4 genotyping was 
done by Southern blotting and polymerase chain reaction, respectively, as described (7, 8). Bar, 100 
Pm. 
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present in the Lhx4-1- mutant but not in 
the Lhx3-I- mutant (7, 13). In the 3+1-- 
4-I- pituitary, cells containing Pit-1, GSU, 
GH, and TSHP transcripts are present, but 
there are fewer than in the 3+/+4-1- pitu- 
itary (13). Therefore, the presence of one 
copy of the Lhx3 gene is sufficient for spec- 
ification of pituitary cell lineages. 

In the Lhx4-1- mutant, immunohisto- 
chemistry revealed that only one of three 
mutant pouches contained a few luteiniz- 
ing hormone-positive (LH+) cells (Fig. 
3A). In situ hybridization with probes spe- 
cific for LH and for the receptor for gona- 
dotropin-releasing hormone (GnRHR) 
showed similar results at both E15.5 and 
E18.5 (13). Thus, Lhx4 may support, but is 
not required for, specification of gonado- 
troph cells. 

We conclude that elaboration of a de- 
finitive pouch is directed by either Lhx3 or 
Lhx4, and subsequent organ fate commit- 
ment is regulated solely by Lhx3. Formation 
of Rathke's pouch and commitment of cells 
to the fate of the pituitary organ are distinct 
developmental events. The function of 
Lhx3 in the latter event is not replaceable 
by Lhx4. 

All defective pouches display defects in 
cell proliferation (Figs. 2 and 3), with no 
detectable increase in programmed cell 

tion depend on Lhx3 and Lhx4 gene dosage. 
The severity of cell proliferation defects 
aligned as follows: 3-1-4-1- > 3-1-4+1- > 
3-I-4+/+ > 3+1-4-1- > 3+/+4-I- > 
3+/-4+/- (Figs. 2 and 3) (13). In Lhx.3-1- 
mutants, pituitary precursor cells cease 
proliferation before most lineage markers 
are expressed (7). In Lhx4-1- mutants, cell 
proliferation in the intermediate lobe is 
less affected, but the anterior lobe is dis- 
tinctly hypoplastic (Fig. 3, A and B) and 
all five cell lineages in the anterior lobe 
show reduced numbers (Fig. 3A) (13). 
The GnRHR+ gonadotroph precursors 
and the Pit-l+ somatotroph, lactotroph, 
and thyrotroph precursors are present at 

E15.5 (Fig. 3C, b and d). This suggests 
that the reduction in terminally differen- 
tiated pituitary cell lineages in the 
Lhx4-1- mouse is caused by a cell prolif- 
eration defect at the Drecursor level and 
that proliferation of these precursors re- 
auires the function of the Lhx4 eene. " 

Thus, pituitary organogenesis is a multi- 
step process, and each step is controlled by 
a distinct genetic program (Fig. 4). Forma- 
tion of Rathke's pouch involves at least two 
independent developmental decisions. A t  
the beginning, a portion of the oral ecto- 
derm apposing the neural ectoderm of the 
diencephalon diverges from its original ec- 
todermal fate to become the pituitary an- 

Oral Pouch + GH + Somatotrophs 
ectoderm - rudiment - Prl - Lactotrophs 

TSH + Thvrotro~hs , . \- LH 
+ Gonadotrophs 

FSH 

? - Corticotrophs 

Formation of Formation of Organ fate Lineage specification, 
a pouch a definitive commitment expansion and terminal 
rudiment pouch differentiation 

- "  " 

? Lhx3 or Lhx3 Lhx31Lhx4 etc. 
Lhx4 
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lage. Tissue recombinatio~l experiments 
have provided evidence that surrounding 
neural tissues are a source of inductive sig- 
nals for determination of the primordium 
(14). Formation of the pouch rudiment does 
not require the f~lnction of either Lhx3 or 
Lhx4 (Fig. 4, arrow a). Lhx3 or Lhs4 controls 
del.elo~ment of the   ouch rudiment into a 
definitive pouch (Fig. 4, arrow b) .  Commit- 
ment of Drecursor cells in Rathke's   ouch to 
a pituitary organ fate is controlled by Lhx3 
(Fig. 4, arrow c). From E12.5 onward, cells 
begin to express lineage-specific molecules. 
Lhx4 is required for proliferation of lineage 
precursors. In the Lhx3-/- mutant, pouch 
development is arrested before the appear- 
ance of most pituitary cell lineages ( i ) ,  pre- 
cluding an exhaustive evaluation of Lhx3 
function in lineage develop~nent. Howelver, 
Lhs3 regulates the expression of Pit-I, GSU, 
and, in synergy with Pit-1 , G H  and prolactin 
(PRL) in vitro (7,  15), suggesting that Lhx3 
also regulates cellular differentiation (Fig. 4, 
arrotv d) .  Because Lhx3 is expressed in almost 
all pituitary precursor cells, it is unlikely that 
this gene determines cell type identity. Rath- 
er, it may act in concert with genes that are 
lineage restricted, such as Pit-IIGHF-1 (1-4) 
and prophet-1 (5). 
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Requirement of NF-KB Activation to Suppress 
p53-Independent Apoptosis Induced by 

Oncogenic Ras 
Marty W. Mayo, Cun-Yu Wang, Patricia C. Cogswell, 

Kelley S. Rogers-Graham, Scott W. Lowe, Channing J. Der, 
Albert S. Baldwin Jr.* 

The ras proto-oncogene is frequently mutated in human tumors and functions to chron- 
ically stimulate signal transduction cascades resulting in the synthesis or activation of 
specific transcription factors, including Ets, c-Myc, c-Jun, and nuclear factor kappa B 
(NF-KB). These Ras-responsive transcription factors are required for transformation, but 
the mechanisms by which these proteins facilitate oncogenesis have not been fully 
established. Oncogenic Ras was shown to initiate a p53-independent apoptotic re- 
sponse that was suppressed through the activation of NF-KB. These results provide an 
explanation for the requirement of NF-KB for Ras-mediated oncogenesis and provide 
evidence that Ras-transformed cells are susceptible to apoptosis even if they do not 
express the p53 tumor-suppressor gene product. 

Mutat ions in a ras allele occur 111 30% of 
all human tumors ( I  ), making ras the most 
widely mutated human proto-oncogene. 
Both mitogen-activated protein (MAP) ki- 
nase-dependent and MAP kinase-inde- 
pendent pathways mediate Ras-induced cel- 
lular responses (2 ) ,  and these signal trans- 
duction pathways ultimately control the ac- 
tivity of various transcription factors (3 ) .  
The Ets, c-Myc, and c-JLIII proteins are Ras- 
responsive transcription factors required for 
cellular transformation in vitro (4) and in 
vivo (5). The transcription factor NF-KB is 
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also activated in response to oncogenic Ras 
(6), and this regulation occurs largely 
through the stimulation of the transcrip- 
tional function of the NF-KB RelA/p65 sub- 
unit 17). Moreover. NF-KB is reauired for 
Ras-mediated focus-forming activity ( i ) ,  
and activation of this transcri~tion factor 
prol~ides protection against apoptosis (8, 9). 
Because NF-KB lnav ~ l a v  a direct role in 
cellular transformation (10) and because 
oncogenesis appears to require an anti-ap- 
optotic f ~ ~ n c t i o n  ( l l ) ,  we inl~estigated 
whether oncogenic Ras requires NF-KB ac- 
tivation to block transformation-induced 
programmed cell death. 

T o  determine whether the inhibition of 
NF-KB in Ras-transformed cells would ini- 
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