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Multistep Control of Pituitary Organogenesis

Hui Z. Sheng, Kenji Moriyama, Tsuyoshi Yamashita, Hung Li,
S. Steven Potter, Kathleen A. Mahon, Heiner Westphal*

Lhx3 and Lhx4 (Gsh4), two closely related LIM homeobox genes, determine formation

of the pituitary gland in mice. Rathke’s pouch is formed in two steps—first as a rudiment
and later as a definitive pouch. Lhx3 and Lhx4 have redundant control over formation of

the definitive pouch. Lhx3 controls a subsequent step of pituitary fate commitment.
Thereafter, Lhx3 and Lhx4 together regulate proliferation and differentiation of pituitary-

specific cell lineages. Thus, Lhx3 and Lhx4 dictate pituitary organ identity by controlling
developmental decisions at multiple stages of organogenesis.

Pituitary organogenesis is driven by a series
of developmental decisions controlled by
transcription regulators. Pit-1/GHF-1 (1-4)
and prophet-1 (5) direct establishment of
certain pituitary cell lineages [for review,
see (0)]. Targeted mutation of the Lhx3

gene revealed its role in the specification of

most pituitary lineages (7). This study fo-
cuses on earlier steps in pituitary organ
formation. We analyze the effects of null
mutations in Lhx3 and Lhx4 (8), a gene

closely related to Lhx3 (8-11), and show
that both genes direct formation of the
pituitary gland in mice.

The anterior and intermediate lobes of

the pituitary are derived from the oral ec-
toderm that invaginates to form Rathke’s
pouch (12). Rathke's pouch gives rise to at
least six pituitary-specific cell lineages (6,
12).

Lhx3 and Lhx4 are expressed throughout

the invaginating pouch at day 9.5 of gesta-
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tion (E9.5) (Fig. 1, a and e). However, at
E12.5, Lhx4 expression becomes restricted
to the future anterior lobe of the pituitary
gland, whereas Lhx3 remains expressed in
the whole pouch (Fig. 1, band f). At E15.5,
Lhx4 expression diminishes; Lhx3 expres-
sion is maintained (Fig. 1, c and g). In the
adult pituitary, Lhx3 is expressed at a higher
level than Lhx4 in the anterior and inter-
mediate lobes (Fig. 1, d and h).

Null mutations of either Lhx3 (7) or
Lhx4 (see below) do not prevent formation
of Rathke’s pouch. We generated Lhx3~/~/
Lhx4™/~ mice carrying null mutations at
both loci (37/747/= for short). In these
mutants the oral ectoderm invaginates nor-
mally to form a pouch rudiment (Fig. 2d).
The pouch rudiment grows no further after
E12.5 (Fig. 2e), and by E15.5, as the carti-
lage of the sphenoid bone grows across the
floor of the brain, the entire rudiment is
observed pressed back toward the oral cav-
ity (Fig. 2f).

After E9.5, normal pouch development
proceeds from a rudiment to a definitive
pouch that is characterized by an extension
of the pouch into the brain cavity, where it
abuts the infundibulum. In Lhx37/~ or
Lhx4~/~ mutants a definitive, albeit defec-
tive, pouch forms (7, 13). Analysis of mu-
tants for one gene that are heterozygous at
the other locus revealed that one wild-type
(WT) allele of either Lhx3 or Lhx4 is suffi-
cient for formation of a definitive pouch
(Fig. 2, g to ).

The next developmental step is commit-
ment to the fate of the pituitary organ,
which leads to formation of a proper pitu-
itary structure and specification of pituitary
lineages. This step is absolutely dependent
on Lhx3 and is not realized in mutants that
lack Lhx3 (Fig. 2, j to 1) [see also (7)].
Histological analysis of pituitary develop-
ment in mutants with intermediate geno-
types showed that Rathke’s pouch gave rise
to a pituitary structure in the presence of at
least one copy of Lhx3 (Fig. 2, g to i) (13),
but not in the absence of Lhx3 (7). Com-
mitment to an organ fate also implies that
the primordium will eventually give rise to
organ-specific cell lineages. Therefore, we
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assessed the ability of mutant primordia to
differentiate into organ-specific cell lin-
eages. Marker gene and protein expression

immunocytochemistry. Transcripts for the
a-glycoprotein  subunit  (GSU), Pit-1,
growth hormone (GH), and thyroid-stimu-
lating hormone B subunit (TSHR) are

was assessed by in situ hybridization and
E12.5 E15:5

E9.5
a ]
Lhx3 - R
f
Lhx4 4

Fig. 1. Expression of Lhx3 and Lhx4 in developing and adult pituitary. Sagittal sections of Rathke's
pouch or coronal sections of adult pituitary were hybridized to Lhx3-specific (7) or Lhx4-specific (8)
riboprobes. Antisense riboprobes were transcribed from Lhx3 or Lhx4 cDNA with RNA polymerase
(Ambion) in the presence of uridine 5’-[33Pjtriphosphate (NEN). In situ hybridization was performed on
tissue sections essentially as described (76). For photography, sections were stained with bisbenzimide
(10 wg/ml) and simultaneously viewed in dark-field and ultraviolet illumination. R, Rathke’s pouch; PL,
posterior lobe; IL, intermediate lobe; AL, anterior lobe. Bars, 100 um.

Adult

E10.5 E12.5

Fig. 2. Ontogeny of anterior and intermediate lobes of pituitary development in WT mice (a to ¢), in
37/=4~/~ double mutants (d to f ), and in mutants for one gene that are heterozygous at the other locus
(g to ). A pouch rudiment is formed in the absence of both Lhx3 and Lhx4 genes. However, this
rudiment fails to grow into a definitive pouch in the double mutant. Downgrowth of the infundibulum
occurs in the absence of a definitive pouch. |, infundibulum; R, Rathke’s pouch; pr, pouch rudiment.
Sagittal sections of embryos were stained with hematoxylin and eosin. Lhx3 and Lhx4 genotyping was
done by Southern blotting and polymerase chain reaction, respectively, as described (7, 8). Bar, 100
wm.
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present in the Lhx4™/~ mutant but not in
the Lhx3™/~ mutant (7, 13). In the 3*/~-
47/~ pituitary, cells containing Pit-1, GSU,
GH, and TSH transcripts are present, but
there are fewer than in the 3*/*4~/~ pitu-
itary (13). Therefore, the presence of one
copy of the Lhx3 gene is sufficient for spec-
ification of pituitary cell lineages.

In the Lhx4~/~ mutant, immunohisto-
chemistry revealed that only one of three
mutant pouches contained a few luteiniz-
ing hormone-positive (LH*) cells (Fig.
3A). In situ hybridization with probes spe-
cific for LH and for the receptor for gona-
dotropin-releasing hormone (GnRHR)
showed similar results at both E15.5 and
E18.5 (13). Thus, Lhx4 may support, but is
not required for, specification of gonado-
troph cells.

We conclude that elaboration of a de-
finitive pouch is directed by either Lhx3 or
Lhx4, and subsequent organ fate commit-
ment is regulated solely by Lhx3. Formation
of Rathke’s pouch and commitment of cells
to the fate of the pituitary organ are distinct
developmental events. The function of
Lhx3 in the latter event is not replaceable
by Lhx4.

All defective pouches display defects in
cell proliferation (Figs. 2 and 3), with no
detectable increase in programmed cell
death (13). These defects in cell prolifera-

Fig. 3. Immunchistologi- A

tion depend on Lhx3 and Lhx4 gene dosage.
The severity of cell proliferation defects
aligned as follows: 37/747/= > 37/74+/= >
3—/—4+/+ > 3+/747/7 > 3+/+4—/— >
3%/=4*/= (Figs. 2 and 3) (13). In Lhx3~/~
mutants, pituitary precursor cells cease
proliferation before most lineage markers
are expressed (7). In Lhx4 ™/~ mutants, cell
proliferation in the intermediate lobe is
less affected, but the anterior lobe is dis-
tinctly hypoplastic (Fig. 3, A and B) and
all five cell lineages in the anterior lobe
show reduced numbers (Fig. 3A) (13).
The GnRHR* gonadotroph precursors
and the Pit-1" somatotroph, lactotroph,
and thyrotroph precursors are present at

& REPORTS

E15.5 (Fig. 3C, b and d). This suggests
that the reduction in terminally differen-
tiated pituitary cell lineages in the
Lhx4~/~ mouse is caused by a cell prolif-
eration defect at the precursor level and
that proliferation of these precursors re-
quires the function of the Lhx4 gene.
Thus, pituitary organogenesis is a multi-
step process, and each step is controlled by
a distinct genetic program (Fig. 4). Forma-
tion of Rathke’s pouch involves at least two
independent developmental decisions. At
the beginning, a portion of the oral ecto-
derm apposing the neural ectoderm of the
diencephalon diverges from its original ec-
todermal fate to become the pituitary an-

Pit-1-dependent
Oral Pouch Definitive Lineage —» GH— Somatotrophé
i Pouch
ectoderm rudiment ouc precursors Pr Lactotrophs
TSH —> Thyrotrophs
LH
—> Gonadotrophs
FSH
? —> Corticotrophs
Fapoun  adeimive  Orgenfate expanon and forminal
rudiment pouch commitmel ditferentiation
«—a b c d
? Lhx3 or Lhx3 Lhx3/Lhx4 etc.

Lhx4

Fig. 4. Schematic illustration of ontogenetic events leading to pituitary formation.

g+ g B

cal (A), morphological (B), T
and in situ hybridization |
(C) analysis of _p\tuiA MSH
tary development in the
Lhx4 mutant. (A) Im-

3++4—— 7

munochistological analysis
(17) of pituitary-specific
lineage development in
the Lhx4 mutant. Par-
affin sections derived from

GSU

E18.5

E15.5

E18.5 normal and mutant
mice were stained with
antibodies specific  to GU
adrenocorticotropic  hor- " .
mone (ACTH) (73), PRL ;

(73), melanocyte-stimulat-
ing hormone (MSH), GSU, L
GH, TSH, and LH. All five TSH
anterior pituitary-specific
celllineages are present in

R H

PL

the Lhx4 pituitary but
in dramatically reduced
numbers. There are about
the same number of mela-
notrophs in the interme-

i v

E

¥

E

._-.*_x.é-. )

RHR

b5

diate lobe of the Lhx4

pituitary and in the control. Bar, 100 pm. (B) (a and c) Sagittal sections derived from E15.5
embryos and stained with hematoxylin and eosin, showing that the ventral wall (the perspective
pouch is hypoplastic. The lumen is enlarged as a result of reduced
proliferation of the precursors. (b and d) Pituitary glands were dissected from newborn mice
pituitary is clearly reduced in size. Bars, 100 pm. (C) Devel-
pituitary. Sagittal sections of Lhx4

anterior lobe) of the Lhx4

The anterior lobe of the Lhx4
opment of lineage precursors in the Lhx4

Pit-1

or control

q+/+ g—-

mouse at E15.5 were hybridized to GnRHR-specific and Pit- 1-specific riboprobes. Both Pit-7* and GnRHR* precursors are present. Arrow highlights a few LH* cells

in the anterior lobe. Bar, 100 pm.
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lage. Tissue recombination experiments
have provided evidence that surrounding
neural tissues are a source of inductive sig-
nals for determination of the primordium
(14). Formation of the pouch rudiment does
not require the function of either Lhx3 or
Lhx4 (Fig. 4, arrow a). Lhx3 or Lhx4 controls
development of the pouch rudiment into a
definitive pouch (Fig. 4, arrow b). Commit-
ment of precursor cells in Rathke’s pouch to
a pituitary organ fate is controlled by Lhx3
(Fig. 4, arrow c¢). From E12.5 onward, cells
begin to express lineage-specific molecules.
Lhx4 is required for proliferation of lineage
precursors. In the Lhx3™/~ mutant, pouch
development is arrested before the appear-
ance of most pituitary cell lineages (7), pre-
cluding an exhaustive evaluation of Lhx3
function in lineage development. However,
Lhx3 regulates the expression of Pit-1, GSU,
and, in synergy with Pit-1, GH and prolactin
(PRL) in vitro (7, 15), suggesting that Lhx3
also regulates cellular differentiation (Fig. 4,
arrow d). Because Lhx3 is expressed in almost
all pituitary precursor cells, it is unlikely that
this gene determines cell type identity. Rath-
er, it may act in concert with genes that are
lineage restricted, such as Pit-1/GHF-1 (1-4)
and prophet-1 (5).
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Requirement of NF-kB Activation to Suppress
p53-Independent Apoptosis Induced by
Oncogenic Ras
Marty W. Mayo, Cun-Yu Wang, Patricia C. Cogswell,

Kelley S. Rogers-Graham, Scott W. Lowe, Channing J. Der,
Albert S. Baldwin Jr.*

The ras proto-oncogene is frequently mutated in human tumors and functions to chron-
ically stimulate signal transduction cascades resulting in the synthesis or activation of
specific transcription factors, including Ets, c-Myc, ¢-Jun, and nuclear factor kappa B
(NF-kB). These Ras-responsive transcription factors are required for transformation, but
the mechanisms by which these proteins facilitate oncogenesis have not been fully
established. Oncogenic Ras was shown to initiate a p53-independent apoptotic re-
sponse that was suppressed through the activation of NF-kB. These results provide an
explanation for the requirement of NF-«B for Ras-mediated oncogenesis and provide
evidence that Ras-transformed cells are susceptible to apoptosis even if they do not
express the p53 tumor-suppressor gene product.

Mautations in a ras allele occur in 30% of
all human tumors (1), making ras the most
widely mutated human proto-oncogene.
Both mitogen-activated protein (MAP) ki-
nase—dependent and MAP kinase—inde-
pendent pathways mediate Ras-induced cel-
lular responses (2), and these signal trans-
duction pathways ultimately control the ac-
tivity of various transcription factors (3).
The Ets, c-Myc, and c-Jun proteins are Ras-
responsive transcription factors required for
cellular transformation in vitro (4) and in
vivo (5). The transcription factor NF-kB is
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also activated in response to oncogenic Ras
(6), and this regulation occurs largely
through the stimulation of the transcrip-
tional function of the NF-kB RelA/p65 sub-
unit (7). Moreover, NF-kB is required for
Ras-mediated focus-forming activity (7),
and activation of this transcription factor
provides protection against apoptosis (8, 9).
Because NF-kB may play a direct role in
cellular transformation (10) and because
oncogenesis appears to require an anti-ap-
optotic function (II), we investigated
whether oncogenic Ras requires NF-kB ac-
tivation to block transformation-induced
programmed cell death.

To determine whether the inhibition of
NF-kB in Ras-transformed cells would ini-
tiate a cell death response, we used -galac-
tosidase (B-Gal) expression assays to mea-
sure cell viability. We inhibited NF-kB ac-
tivity with a super-repressor form of IkBa
(SR-IkBa), which cannot be phosphoryl-
ated (12) or degraded (13) and, therefore,
blocks the nuclear translocation and subse-
quent transactivation of NF-kB —responsive
genes (8). Parental NIH 3T3 and H-Ras—
transformed cells (3T3 H-Ras[V12}) were
cotransfected with a pCMV-LacZ reporter
and with either an empty expression vector
control or a vector encoding SR-IkBa. H-
Ras—transformed NIH 3T3 cells expressing
SR-IkBa displayed a decrease in the total
number of 3-Gal—positive cells as compared
with cells transfected with the vector con-
trol (Fig. 1). In contrast, parental NIH 373
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