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Endoplasmic reticulum (ER) degradation of aberrant proteins is mediated by the ubig-
uitin-proteasome pathway. Here, a membrane-bound component of the ubiquitin sys-
tem, Cuelp, was identified. It was shown to recruit the soluble ubiquitin-conjugating
enzyme Ubc7p to the ER membrane. In the absence of Cue1p, unassembled and thus
cytosolically mislocalized Ubc7p was unable to participate in ER degradation or in the
turnover of soluble non-ER proteins. Moreover, ubiquitination by Cuelp-assembled
Ubc7p and Ubc6p was a prerequisite for retrograde transport of lurnenal substrates out
of the ER, which suggests that ubiquitination is mechanistically integrated into the ER

degradation process.

Formarion of ubiquitin conjugates requires
three classes of enzymes: the ubiquitin-acti-
vating enzyme (E1), ubiquitin-conjugating
enzymes (E2s or Ubcs), and occasionally
ubiquitin-protein ligases (E3s). El activates
the highly conserved polypeptide ubiquitin
under adenoside triphosphate (ATP) hy-
drolysis and transfers it to the Ubcs. Both El
and Ubcs form a thioester bond between
their active-site cysteine and ubiquitin. Ubcs
then attach ubiquitin to substrate proteins
by an isopeptide bond that marks them for
proteolysis by the 26S proteasome (1).

This proteolytic pathway is also in-
volved in ER degradation, a process that
helps to prevent malfunctions in the secre-
tory pathway (2). The integral ER mem-
brane protein Ubc6p (3) and the soluble
Ubc7p are key components for ER degrada-
tion in yeast. Substrates of these enzymes
include a mutant form of the multispanning
ER membrane protein Sec61p (4), encoded
by sec61-2 (5), and a mutated carboxypep-
tidase Y (CPY*) of the ER lumen, encoded
by prcl-1 (6, 7). The proteolysis of CPY*
occurs outside the ER and is preceded by
retrograde transport from the ER lumen
back into the cytosol (7). This transport is
facilitated by components of the protein
translocation machinery (8). We addressed
the following issues: Are additional compo-
nents of the ubiquitin system present at the
ER membrane? How is Ubc7p involved in
ER degradation? Are retrograde transport
and ubiquitination functionally coupled
processes’?

Initially, we purified membrane-bound
components of the ubiquitin system from
veast by their ability to form a thicester bond
with ubiquitin in the presence of ATP (9). A
wild-type cytosolic fraction II serving as
source for cytosolic E1 and Ubcs but devoid
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of free ubiquitin was used to preload ubig-
uitin-Sepharose with these components.
Two columns were prepared from this
ubiquitin-Sepharose. Membrane proteins
solubilized with the detergent CHAPS
were applied fo one column (10); the sec-
ond column was loaded in parallel with
the solubilization buffer and served as a
control. Thioester-bonded proteins were
eluted from both columns with dithiothre-
itol (DTT). A prominent protein of 23 kD
was detected only in the eluate of the first
column (Fig. 1A). This protein was puri-
fied to homogeneity by reversed-phase
high-performance liquid chromatography
(RP-HPLC), and its 29 NH,-terminal
amino acids were sequenced.

The cloned corresponding gene (11)
codes for a protein of 203 amino acids with
a calculated molecular weight of 22.8 kD.
(Fig. 1B). We called this nonessential (11)
gene CUEI (factor for coupling of ubiquitin
conjugation to ER degradation). Cuelp was
predicted to have a single NH,-terminal
membrane-spanning  segment, and the
COOH-terminus of Cuelp was oriented to-
ward the cytosol (12). Cuelp could be ex-
tracted from crude microsomes by deter-
gents, but not by urea, salt, or alkaline
conditions (13), verifying that it was an
integral membrane protein (Fig. 1C).

Sequence comparison revealed no simi-
larity of Cuelp to previously identified com-
ponents of the ubiquitin system. Its position
within the ubiquitin system was determined
by a ubiquitin affinity chromatography assay
(14). A glutathione-S-transferase—ubiquitin
fusion protein (GST-ubiquitin) was nonco-
valently immobilized on glutathione-Sepha-
rose beads. After incubation of these beads
with fraction 1I, enzymes of the ubiquitin
system had formed thiocester bonds with
GST-ubiquitin. Elution of the bound pro-
teins under nonreducing conditions with
SDS preserved these thioester bonds. As a
control, we used Ubclp contained in frac-
tion II. It bound efficiently to GST-ubig-

uitin in the presence of ATP and could not
be eluted with 3.0 M urea but could be
eluted with SDS. The molecular weight of a
population of Ubclp was increased by 30 kD,
which is the size of GST-ubiquitin. This
modification was reversed by reducing con-
ditdons and thus represented a thioester-
bonded form of Ubclp (Fig. 2A). Therefore,
detection of this molecular weight shift in-
dicated covalent binding of the eluted pro-
teins to GST-ubiquitin. The absence of this
shift would indicate noncovalent binding.
To analyze the behavior of membrane-bound
enzymes of the ubiquitin system, we charac-
terized Ubc6p in the following assay. Bead-
bound GST-ubiquitin was preloaded with
fraction II in the presence of ATP, and
solubilized membrane proteins were subse-
quently added. Ubc6p behaved similarly to
Ubclp (Fig. 2B). Cuelp derived from wild-
type membrane extracts also bound to im-
mobilized GST-ubiquitin but was partially
washed off with urea. No forms of Cuelp
with an increased molecular weight were
detected in the eluates. Binding of Cuelp
was completely dependent on ATP (Fig.
2B). Thus, Cuelp neither formed a thioester
bond with ubiquitin nor bound to ubiquitin
noncovalently. Instead, it was likely that
Cuelp was immobilized by noncovalent in-
teraction with a thioester-bound enzyme of
the ubiquitin system.

Using preparations from Ubc deletion
strains, we identified this component. Puri-
tication of Cuelp by GST-ubiquitin affinity
chromatography was not altered when we
applied solubilized membrane proteins from
Aubc6 cells (Fig. 2B). Application of frac-
tion I from Aubc7 cells in the preloading
step also had no effect on Cuelp binding
{(Fig. 2B). But when fraction II and mem-
brane proteins were bhoth derived from
Aubc7 cells, Cuelp did not bind to GST-
ubiquitin any more (Fig. 2B). Thus, only
membrane-bound Ubc7p could immobilize
Cuelp. The association of Cuelp and
Ubc7p was also demonstrated by immuno-
affinity chromatography with antibodies
specific for Cuelp (15). To this end, we
constructed a myc-tagged version of Ubc7p
(16). Applying solubilized membrane pro-
teins from cells expressing Cuelp and
Ubc7p™* from multicopy vectors, both pro-
teins could be coeluted from the anti-
Cuelp immunoaffinity column. The anti-
genic peptide blocked their purification
completely (Fig. 2C). These results con-
firmed that Cuelp and Ubc7p are assem-
bled into a membrane-bound heterodimer
or a larger protein complex. Whether both
proteins bind each other directly, or wheth-
er addtional components are also part of a
putative complex, remains to be clarified.

The assembly of Cuelp with Ubc7p sug-
gested that Cuelp determined the enzyme's
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intracellular distribution (Fig. 2D). Ubc7p™©

dependent localization of Ubc7p to the ER

and various sec61-2 mutant cells were pulse-

expressed in Aubc7 cells from a single-copy
vector was detected solely in a crude micro-
somal fraction. In the absence of Cuelp,
Ubc7p™* was not detectable at all. In a Acuel
strain, overexpressed Ubc7p™¢ was found ex-
clusively in the cytosol. Upon overexpression
of both Ubc7p™< and Cuelp from multicopy
vectors, Ubc7p™< sedimented exclusively
with the membranes. Consistently, immuno-
fluorescence microscopy indicated the Cuelp-

Fig. 2. Cuelp is assem-

surface and possibly the nuclear membrane
(16).

In order to ask if the interaction of Cuelp
with Ubc7p at the ER membrane was func-
tionally important, we analyzed the degrada-

labeled at the allele’s nonpermissive temper-
ature. Under this condition, mutant Sec61p is
short-lived in a wild-type background. After
different chase periods, cells were lysed and
Sec61p was immunoprecipitated (Fig. 3A). In

tion of different substrates in pulse-chase ex-
periments (17). First, the essential multispan-
ning ER membrane protein Sec61p, which is
a key component of the protein translocation
apparatus (18), was investigated. Wild-type

the absence of Cuelp, proteolysis of Sec61-2p
was abrogated as completely as in cells lacking
Ubc7p. This observation might have been
due to the drastically reduced level of Ubc7p
in Acuel cells. To test this, we used cells
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immunoaffinity chromatography (75). Membrane pro-

teins were prepared from a Acue?Aubc? strain expressing Cuelp and Ubc7p™© from multicopy vectors. (D) Partitioning of Ubc7p to crude microsomal
preparations depends on Cuelp. Equal portions of membrane proteins and cytosol were loaded. Extracts were prepared (70) from a Aubc?7 strain expressing
Ubc7p™< from a single-copy vector (lanes 1 and 2) or from a Aubc7Acue1 strain expressing Ubc7p™< either from a single-copy (lanes 3 and 4) or a multicopy
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ARS-CEN vector; me, multicopy 2-um vector.
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Fig. 3. Cuelp integrates Ubc7p into ER-bound
ubiguitination and degradation. mc, multicopy 2-
wm vector. (A) Cuelp-assembled Ubc7p deter-
mines the half-life of mutant Sec61p. Pulse-chase
analysis was performed as described (4). Equal
amounts of cells of the indicated strains were shift-
ed to the restrictive temperature of 38°C for 1 hour
before the pulse-labeling with 38S-methionine. At
each time point of the chase, equal amounts of
cells were lysed and microsomes were prepared.
The proteins contained in the microsomes were
solubilized and subjected to immunoprecipitation
with Sec61p-specific antibodies. (B) Cuelp-as-
sembled Ubc7p determines the half-life of CPY*.
Pulse-chase analysis of CPY* was performed as
described in (A), with the exception that the cells
were always kept at 30°C and total lysates were
prepared. (C) Cuelip-assembled Ubc7p deter-
mines the half-life of a fusion protein containing the
Deg1-degradation signal. Deg1—-f-galactosidase
(B-Gal) was expressed from a multicopy vector,
and pulse-chase analysis was done as described
(719). All immunoprecipitates were analyzed by
SDS-PAGE and fluorography.

lacking Cuelp but containing large amounts
of overexpressed Ubc7p in the cytosol. This
unassembled Ubc7p was unable to participate
in ER degradation of Sec61-2p. In a similar
pulse-chase approach, we determined the
half-life of CPY* in different isogenic prcl-1
mutant strains (Fig. 3B). In the absence of
Cuelp, CPY* was significantly stabilized. The
additional deletion of both UBC6 and UBC7
in the Acuel background had no further in-
fluence. Again, cytosolically mislocalized
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Fig. 4. In vivo analysis of retrograde transport of CPY* by a combined pulse-chase and protease-
protection approach (27). (A) prc7-1 cells were lysed with glass beads under conditions that allowed the
formation of outside-out vesicles. The crude homogenates remained untreated or were treated with
proteinase K in the absence or presence of the detergent Triton X-100. The protease accessibility of
CPY* and Cue1p was detected by immunoblotting with specific antibodies. (B) No significant fraction of
pulse-labeled CPY* was accessible to exogenously added proteinase K during ER degradation.
prc1-1 cells were pulse-labeled, and at each time point of the chase, cells were lysed. These
homogenates were treated as described (27). Thereafter the homogenates were solubilized, precip-
itated with trichloroacetic acid, resuspended, and subjected to immunoprecipitation with CPY-
specific antibodies. Immunoprecipitates were quantitated after SDS-PAGE with a Phosphorimager.
(C) Loss of ER-bound ubiguitination does not allow detection of accumulated CPY* outside the ER.
prc1-1Aubc6Aubc7Acuel celis were analyzed as described in (B).

Ubc7p did not destabilize CPY*. Ubc6p and
Ubc7p also recognize the Degl-degradation
signal of the short-lived soluble transcription-
al repressor mata2 (19). Unassembled Ubc7p
was inactive in this pathway (Fig. 3C) and
also in protection of cells against cadmium
toxification (20). Thus, all identified Ubc7p-
mediated pathways, including a pathway that
originates outside the ER, absolutely required
association with Cuelp at the ER.

Next, we analyzed the cellular distribu-
tion of CPY* in the presence and absence of
the membrane-bound ubiquitination activity
in vivo. If retrograde transport and ubiquiti-
nation on the ER surface are coupled pro-
cesses, CPY* would be retained inside the
ER in the absence of membrane-bound ubig-
uitination. If not, it would be transported
into the cytosol and thus become sensitive to
protease attack. To differentiate between
these possibilities, we combined the pulse-
chase approach with a protease protection
assay (21). The integrity of the prepared
microsomes as well as the activity of the
protease and the accessibility of proteins on
the cytosolic ER surface were controlled in
parallel immunoblots (Fig. 4A). The pulse-
labeled CPY* of prcl-1 cells was insensitive
to exogenously added proteinase K during
its rapid degradation (Fig. 4B), indicating
that cytosolic intermediates are rare spe-
cies. In the absence of membrane-bound
ubiquitination (prcl-1Acuel Aubc7Aubc6),
CPY* was stabilized as expected, but no
protease-accessible fraction of the accu-
mulating protein was detectable (Fig. 4C).
Thus, we propose that without the surface-
bound ubiquitination activity, CPY* re-
mained inside the microsomes, which in-

dicates a lack of retrograde transport.
Cuelp is the first factor known to localize
a component of the ubiquitin system. The
compartmental targeting of the soluble
Ubc7p to the ER caused by assembly with
Cuelp is a prerequisite for Ubc7p’s function.
This represents a new way to locally define
substrate specificities of the ubiquitin system.
Our observations strengthen the view of the
ER surface as a cellular “ubiquitin conjuga-
tion platform.” Even soluble non-ER pro-
teins containing the Degl-degradation signal
are also targeted to this membrane-bound
ubiquitination machinery before proteolysis.
Because the components of the ubiquitin-
proteasome pathway could be preassembled
at the cytosolic surface of the ER, such a
targeting step could increase the efficiency of
ubiquitin-dependent proteolysis. In fact, pre-
vious results have indicated an ER localiza-
tion of El and the 26S proteasome (22).
Furthermore, retrograde transport of ER deg-
radation substrates seems to be functionally
coupled to ubiquitination on the ER surface.
Such a coupling could prevent a substrate’s
escape into the cytosol before targeting it to
the 26S proteasome, and the ongoing ubig-
uitination might contribute to the unidirec-
tionality of the retrograde transport.
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Multistep Control of Pituitary Organogenesis

Hui Z. Sheng, Kenji Moriyama, Tsuyoshi Yamashita, Hung Li,
S. Steven Potter, Kathleen A. Mahon, Heiner Westphal*

Lhx3 and Lhx4 (Gsh4), two closely related LIM homeobox genes, determine formation
of the pituitary gland in mice. Rathke’s pouch is formed in two steps—first as a rudiment
and later as a definitive pouch. Lhx3 and Lhx4 have redundant control over formation of
the definitive pouch. Lhx3 controls a subsequent step of pituitary fate commitment.
Thereafter, Lhx3 and Lhx4 together regulate proliferation and differentiation of pituitary-
specific cell lineages. Thus, Lhx3 and Lhx4 dictate pituitary organ identity by controlling
developmental decisions at multiple stages of organogenesis.

Pituitary organogenesis is driven by a series
of developmental decisions controlled by
transcription regulators. Pit-1/GHF-1 (1-4)
and prophet-1 (5) direct establishment of
certain pituitary cell lineages [for review,
see (0)]. Targeted mutation of the Lhx3
gene revealed its role in the specification of
most pituitary lineages (7). This study fo-
cuses on earlier steps in pituitary organ
formation. We analyze the effects of null
mutations in Lhx3 and Lhx4 (8), a gene

closely related to Lhx3 (8—11), and show
that both genes direct formation of the
pituitary gland in mice.

The anterior and intermediate lobes of
the pituitary are derived from the oral ec-
toderm that invaginates to form Rathke’s
pouch (12). Rathke's pouch gives rise to at
least six pituitary-specific cell lineages (6,
12).

Lhx3 and Lhx4 are expressed throughout
the invaginating pouch at day 9.5 of gesta-
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