Laboratory results from photooxidation
and photolysis experiments (17) predict an
enrichment factor of € = —0.6 per mil for
180, a result which is incompatible with the
value of —12.9 per mil derived from our
data. If the observed stratospheric enrich-
ments are caused by the known sink reac-
tions, this comparison would indicate that
the conditions under which the laboratory
data were obtained were not representative
of stratospheric conditions, and that these
enrichment factors are not applicable to the
stratosphere. The laboratory photolysis ex-
periments were conducted at a wavelength
of 184.9 nm, near the peak of the N,O
absorption continuum. However, peak pho-
tolysis rates in the stratosphere occur be-
tween 195 and 205 nm (I8) because of the
tail of the Schumann-Runge bands of O,
absorption. A theoretical treatment has been
carried out by Yung and Miller (19) which
suggests the possibility of a wavelength-de-
pendent fractionation at wavelengths greater
than 185 nm. Alternatively, there may be
other stratospheric sinks such as heteroge-
neous reactions on or in aerosols, because
the samples originate from close to the Junge
layer of peak concentrations of H,SO, and
HNO; aerosols (20). Finally, there might
exist an exchange mechanism wherein iso-
topically enriched N and O are transferred to
molecular N,O with no apparent loss, but
this is unlikely.

Thus, our data imply that the observed
isotopic enrichments are the result of a strato-
spheric sink process and that the contribution
of a return flux of isotopically enriched N,O
from the stratosphere to the troposphere
should indeed help balance the isotopically
light, biologically mediated, source terms as
proposed by Kim and Craig (3) [although
potential terrestrial sources of isotopically en-
riched N,O have recently been observed
(21)]. The observed enrichment factors, how-
ever, are incompatible with those produced in
the laboratory and indicate that present un-
derstanding of the details of N,O photochem-
istry is still incomplete.
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Isotopic Fractionation of Stratospheric
Nitrous Oxide

Yuk L. Yung and Charles E. Miller

We propose an isotopic fractionation mechanism, based on photolytic destruction, to
explain the "SN/'*N and '80/'®0 fractionation of stratospheric nitrous oxide (N,O) and
reconcile laboratory experiments with atmospheric observations. The theory predicts
that (i) the isotopomers ®N'“N'60 and "*N*®N'€0 have very different isotopic fraction-
ations in the stratosphere, and (ii) laboratory photolysis experiments conducted at 205
nanometers should better simulate the observed isotopic fractionation of stratospheric
N,O. Modeling results indicate that there is no compelling reason to invoke a significant
chemical source of N,O in the middle atmosphere and that individual N,O isotopomers
might be useful tracers of stratospheric air parcel motion.

The continued increase of N,O in the
atmosphere is a serious environmental con-
cern because it is an efficient greenhouse
gas (1) as well as the principal source of odd

Y. L. Yung, Division of Geological and Planetary Sci-
ences, California Institute of Technology, Mail Stop 150-
21, Pasadena, CA 91125, USA.

C. L. Miller, Atmospheric Kinetics and Photochemistry
Group, Jet Propulsion Laboratory, California Institute of
Technology, Mail Stop 183-901, 4800 Oak Grove Drive,
Pasadena, CA 91109-8099, USA.

nitrogen that regulates the ozone layer (2).
Despite its importance, the N,O budget is
currently not well quantified, which makes
it difficult to determine the precise source
and the cause of its increase (3—6). Recent
measurements of isotopic fractionation of
N,O in the stratosphere (7, 8) and labora-
tory experiments demonstrating an appar-
ent lack of isotopic signature in its principal
loss mechanism (9) (photolysis) suggest
that the standard atmospheric chemistry
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Table 1. Wavelength shifts in the UV absorption spectra of various N,O isotopomers due to ZPE differences. ZPE = 1/2 X,gv, where g, is the degeneracy
and v, is the vibrational frequency. Vibrational frequencies are from (29-32) and are rounded to the nearest 1 cm ™.

Isotopomer ZPE A(ZPE) Wavelength shift per nanometer
446 2343.5 0 180.000 185.000 190.000 195.000 200.000 205.000 210.000 215.000 220.000
456 2304.0 -39.5 179.872 184.865 189.858 194.850 199.842 204.834 209.826 214.818 219.809
546 2321.0 —-22.5 179.927 184.923 189.919 194.914 199.910 204.905 209.901 214.896 219.891
448 2316.0 —-27.5 179.911 184.906 189.901 194.895 199.890 204.884 209.879 214.873 219.867
447 2328.5 -15 179.951 184.949 184.946 194.943 199.940 204.937 209.934 214.931 219.927
556 2282.0 -61.5 179.801 184.790 189.778 194.766 199.754 204.742 209.729 214.716 219.708
458 2280.5 —-63 179.796 184.785 189.773 194.761 194.748 204.736 209.723 214.709 219.696
548 2292.0 =515 179.833 184.824 189.814 194.804 199.794 204.784 209.7783 214.762 219.751

(10) is incomplete. To explain these obser-
vations, several authors (11, 12) have pro-
posed nonstandard reactions for producing
N,O in the middle atmosphere. These re-
actions have profound implications for the
atmospheric budget and the growth pattern
of N,O. However, we show that the isoto-
pic fractionation of N,O can be explained
within the standard chemistry.

About 90% of atmospheric N,O is lost
through photolysis (13) in the stratosphere
by absorption of solar radiation in the spec-
tral range 185 to 210 nm

N;O + hv (A = 185 to 210 nm)
—>NZX(IE:) + O('D) (1)

Atmospheric N,O is also lost through a
minor channel (~10%) by reaction with
O('D) to produce two NO molecules or N,

+ O,. In the absence of any significant
March
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atmospheric source of N,O, its isotopic sig-
nature is determined by biological and in-
dustrial sources (7, 14). Any enhancement
of the rare isotopomers in the upper atmo-
sphere is then a consequence of the atmo-
spheric loss mechanisms (1).

The N,O absorption spectrum is contin-
uous between 175 and 240 nm, with a
maximum near 180 nm (15-18), although
there are some diffuse vibronic features su-
perimposed on the continuum absorption
between 175 and 195 nm (15, 18). Quan-
tum yield measurements (10) reveal that
photoexcitation into the continuum results
in unit production of N, X(l\ )+ O('D).
Detailed photodissociation dynamms exper-
iments (19-22) are consistent with dissoci-
ation via the repulsive B('A) electronic
state (23).

We propose that enhanced photode-
struction of the "N"N!°QO isotopomer (re-
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Fig. 1. Isotopic fractionation of isotopomer N,O (448) relative to standard N,O (446) in per mil as a
function of season, latitude, and pressure. Z* is defined by H log(p,/p), where H = 6.949 km, p, =
surface pressure, and p = pressure. The results were computed by standard chemical kinetics with a
model of the terrestrial atmosphere (70). Isotopic fractionation of N,O in the troposphere is set to zero.
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ferred to as 446) relative to the heavy N,O
in isotopic forms affects the isotopic com-
position. We assume that (i) only the
X('=T) — B('A) electronic transition is
involved in the absorption-photodissocia-
tion process and (ii) the two electronic
potential energy surfaces are invariant to
isotopic substitution. For these assumptions,
isotopic substitution shifts the vibrational
energy levels of the X('=") state without
significantly altering the continuum levels
of B('A). Because all the rare isotopomers
of N,O are heavier than “N'N!'"¢O, the
ground state zero point vibrational energies
(ZPEs) of the heavy isotopomers are re-
duced relative to the ZPE of (446). This
situation implies that the ultraviolet (UV)
absorption spectra of the heavy isotopomers
will be blue-shifted relative to the (446)
spectrum and that the energy shift corre-
sponds to the respective ZPE difference.
The reduced ZPEs of the heavy isotopomers
result in blue shifts of only 0.1 to 0.2 nm
(Table 1); yet, when convoluted with the
solar flux spectrum, this subtle effect pre-
dicts the enrichment of all rare isotopomers
of N,O that are consistent with atmospher-
ic measurements (24).

Using the absorption cross-section shifts

(456) versus (448) 7 e g A
“Avg versus " 1
__,.4}7,/; P ©o(448) 7 3
// ,/"(

~(548) versus (448) ]

P T TN

1015 20 25 30
5180

Fig. 2. Multi-isotope correlations between isoto-
pomers of N,O. The results for Avg were comput-
ed by using the average fractionation of (456)
and (546) isotopomers, 3'°N,,, = (8"°Nz +
8"5Ng,e)/2. Circles and dots are measurements of
Kim and Craig (7) and Rahn and Wahlen (8), re-
spectively. Sizes of circles represent the range of
isotopic fractionation of tropospheric N,O that
has been subtracted from the data, not the errors
of measurement.
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calculated in Table 1, the N,O absorption
cross-section spectral function recommend-
ed by DeMore et al. (10), and a two-dimen-
sional model of the terrestrial atmosphere
(25), we computed the isotopic fractionation
of MNMN'"80 (448) relative to the normal
isotopomer. Enhancement of the species
(3'80), defined by standard convention (8,
14), varies as a seasonal function of altitude
and latitude (Fig. 1). Isotopic enrichment in
the troposphere is set to zero. Enrichment
increases in the upper stratosphere as the
(446) isotopomer is preferentially photo-
lyzed. Because the fractionation occurs only
in the stratosphere, stratospheric 8'%0 is, in
general, a function of the aging of the air
after it crosses the tropopause.

Our model predicts that the structural
isotopomers (456) and (546) should show
substantially different fractionation even
though their molecular weights are identical.
However, the atmospheric isotopic fraction-
ation measurements fail to reveal this dis-
tinction because mass spectroscopic detec-
tion cannot differentiate (456) from (546)
and thus lumps all m/fe = 45 signals into a
single measurement. Therefore, we expect
the experimental results to coincide with a
model prediction for the average 3N,
gizﬁ or é?;;N%inJcrh?ildSliffé)/z’ e

456 546 y (see Fig. 2).
The experimental data show good qualita-
tive agreement with the model but do not
provide definitive proof of its validity (26).
In a first-order approximation, all isotopic
enrichments are proportional to the magni-
tude of the A(ZPE) values listed in Table 1.
Thus, we expect the largest fractionation for
(556) and the least for (447). The results
summarized in Fig. 2 offer an explanation for
the atmospheric fractionation measurements
(7, 8). Furthermore, our theory reveals that
the near coincidence of 8"°N and 8'®0 in
atmospheric N,O is due to the inability of
mass spectrometric measurements to distin-
guish the specific position of ®N substitu-
tion in the molecule. Infrared measurements
can selectively determine the atmospheric
concentrations of specific isotopomers and
should provide more accurate isotopic en-
hancement factors.

The proposed theory also explains why
the recent laboratory measurements of
Johnston et al. (9) failed to observe any
isotopic enrichment in photolyzed N,!¢O,
N,'70, and N,'80 samples. The reason is
that the experiments were done by photo-
dissociating N,O at 185 nm, sampling a
portion of the absorption spectrum where
do(N)/dN ~ 0. Expressing the fractional
change in the absorption cross section with
\ as

1 do(\)

F(\) = E_m I

(2)
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and using the standard recommended val-
ues (10), one obtains F(185 nm) = —0.007
per nanometer and F(205 nm) = —0.180
per nanometer. This means that a 0.1-nm
shift in the absorption cross section at 185
nm produces an isotopic enhancement of
only 0.7 per mil, whereas a 0.1-nm shift in
the absorption cross section at 205 nm pro-
duces an isotopic enhancement on the or-
der of 18 per mil. Thus, our mechanism
suggests that N,O isotopic enhancement is
not sensitive to photolysis at 185 nm, but it
is extremely sensitive to photolysis near 205
nm where the cross sections are changing
rapidly. Most atmospheric N,O photode-
struction occurs at 205 nm because of the
convolution of the N,O absorption cross
sections with the atmospheric UV transmis-
sion window (27). Therefore, repeating the
experiments of Johnston et al. (9) with
205-nm light should produce 8'°N versus
3180 correlations similar to those observed
in the atmosphere.

In summary, we propose that the rate of
stratospheric photodissociation governs the
isotopic fractionation of atmospheric N,O
and that the photolysis rates for specific iso-
topomers depend on both the mass and the
position of the substituted atom. Our theory
suggests that we now have the ability to
probe the middle atmosphere at a level of
sensitivity where subtle details such as the
ZPEs of molecules can yield measurable sys-
tematic effects. This creates the possibility
that one may probe the chemistry and dy-
namics of the middle atmosphere by using all
the N,O isotopomers listed in Table 1 (28).
The N,O isotopomers are abundant (con-
centrations of several parts per billion by
volume) and their chemistries are virtually
identical so the observed fractionation is a
simple function of the aging of the air parcel.
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