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Interior Structure and Seasonal Mass
Redistribution of Mars from Radio
Tracking of Mars Pathfinder

W. M. ‘Folkner,* C. F. Yoder, D. N. Yuan, E. M. Standish,
R. A. Preston

Doppler and range measurements to the Mars Pathfinder lander made using its radio
communications system have been combined with similar measurements from the Viking
landers to estimate improved values of the precession of Mars’ pole of rotation and the
variation in Mars’ rotation rate. The observed precession of —-7576 * 35 milliarc seconds
of angle per year implies a dense core and constrains possible models of interior com-
position. The estimated annual variation in rotation is in good agreement with a model of
seasonal mass exchange of carbon dioxide between the atmosphere and ice caps.

Little is known about the interior of
Mars. From telescopic observations and
spacecraft missions, the mass and radius of
Mars have been determined and hence its
mean density. Because Mars is significant-
ly asymmetric, its polar moment of inertia
C cannot be inferred from the gravity
field. Determination of the polar moment
of inertia yields information on the distri-
bution of mass within the planet, such as
whether the planet has a dense core sur-
rounded by a lighter mantle. Analysis of
radio tracking measurements from the Vi-
king landers has determined the normal-
ized polar moment of inertia C/MR?
where M is the mass of Mars and R is its
mean radius, to be 0.355 *= 0.015 (1).
However, the uncertainty in this estimate
is not small enough to determine with
certainty that Mars has a dense core or to
distinguish between interior models rang-
ing from an Earth-like composition to
iron-enriched compositions characteristic
of the meteorites thought to originate
from Mars (2).

The Mars Pathfinder mission has provid-
ed an opportunity to improve our knowl-
edge of Mars’ polar moment of inertia and
hence our knowledge of Mars’ interior. As
with the Viking landers, the Pathfinder ra-
dio system used for communication with
Earth was also used to measure the distance
(from the signal travel time) and changes in
distance (from the Doppler frequency shift
of the signal) between Earth and Mars.
These measurements provided information
on the changing orbits of Earth and Mars
and on the rotation of Mars (3). Of partic-
ular interest is the martian rotational infor-
mation: secular precession and periodic nu-
tation of the spin axis, seasonal and tidal
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variations in the rotation rate, and Chan-
dler-like wobble of Mars’ figure axis relative
to the spin axis. These quantities can be
used to constrain models of the interior of
Mars and estimate the annual mass ex-
change between the atmosphere and the
polar ice caps. :

The precession is driven by the gravita-
tional torque of the sun acting on Mars’
oblate figure and is proportional to (C — (A
+ B)/2)/C where C > B > A are the
principal moments of inertia of Mars. The
factor C — (A + B)/2 = J,MR? is already
known with high accuracy from detection
of Mars’ gravity field with the use of Viking
orbiter and other tracking data (4). Accu-
rate measurement of the precession is need-
ed to determine the polar moment of iner-
tia. Knowledge of the moment of inertia,
combined with measurements of Mars’
mass, size, shape, and low-order gravity har-
monics, provides key information for mod-
els of the interior structure.

In addition to providing insight into the
interior of Mars, the polar moment of iner-
tia is of interest in determining the martian
climate over millions of years. Due to the
action of the sun, Jupiter, and other planets,
the obliquity of Mars varies by tens of de-
grees (5). The change in obliquity causes
large changes in insolation that result in
dramatic changes in climate (6). The his-
tory of the obliquity depends on the value
of the moment of inertia, and a more pre-
cise determination of the moment of inertia
provides better estimates of the history of
insolation.

Mars’ rotation rate is expected to vary
because of redistribution of mass by seasonal
sublimation and condensation of carbon di-
oxide at the polar ice caps (7). Smaller
variations are expected as a result of gravi-
tational solar tides. The size of the varia-
tions depends on the amount of mass redis-
tribution and on the internal structure.

The Pathfinder tracking data acquired
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from landing on 4 July 1997
through the end of September
1997 have been used in combina-
tion with tracking data from the Viking
landers to determine improved estimates of
the precession and seasonal rotation varia-
tions of Mars. The combined data set is
powerful, in spite of the relatively short
span of the Pathfinder data, because of the
large movement of the martian pole from
precession between the time of the Viking
lander mission and the Pathfinder mis-
sion. The Viking lander data give the
mean spatial orientation of the pole of
rotation of Mars at the midpoint of that
experiment, whereas the Pathfinder data
give the pole orientation about 20 years
later. In addition, improved estimates of
the seasonal variations in rotation rate,
compared to previous Viking results, have
been achieved by including 2 years of
Doppler data from the Viking I lander
(recovered by R. Wimberly) that were not
included in previous analyses. The Path-
finder data span is too short to significant-
ly improve estimates of seasonal variations
in rotation rate.

Because the Pathfinder radio system op-
erates at a higher frequency than the Viking
lander radio systems, the Doppler data are
much less affected by fluctuating charged
particles in the solar system and in Earth’s
ionosphere (8). The Pathfinder ranging
measurements are similarly more accurate
than the Viking lander measurements, part-
ly because of the higher communications
frequency and partly because of improve-
ments in ground station calibrations.

The Pathfinder and Viking lander track-
ing measurements have been analyzed to
solve for Mars rotation and orbit parame-
ters. The rotation from Mars-fixed coordi-

Table 1. Estimated Mars rotation constants.
Numbers in parentheses indicate uncertainties in
the final digit or digits.

Parameter Value

Obliquity & (degrees)

Obliquity rate de/dt
(mas/year)

Node s (degrees)

25.189417 (35)
1(16)

35.43777 (14)

Precession rate di/dt —7576 (35)
(mas/year)

Rotation about pole ¢ 133.61259 (fixed)
(degrees)

Rotation rate dd/dt 350.89198521 (8)
(degrees/day)

Annual term C1 (mas) 504 (57)

Annual term S1 (mas) —170 (81)

Semiannual term C2 (mas) —107 (56)

Semiannual term S2 (mas) —82 (59)

Triannual term C3 (mas) —25(61)

Triannual term S3 (mas) -12 (89)

Quarterly term C4 (mas) —41(38)

Quarterly term S4 (mas) 31 (40)
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composition with x,; near 75%. In this
case, and if the core composition satisfies
FeS/(Fe + FeS), xg < 50%, then the core
radius must be in the range of 1450 to 1700
km for warm models. The moment con-
straint for cold models with x5 <50 tends to
favor mantle compositions with x,, near
80% and core radii in the range of 1300 to
1450 km. In either case, Mars’ core is a
considerably smaller fraction of the total
planetary mass than is Earth’s.

Variations in rotation about the spin
axis are thought to be dominated by mass
exchange between the polar caps and the
atmosphere. During winter, part of the at-
mosphere condenses at the poles. If the
southern cap increased symmetrically as the
northern cap decreased, then there would
not be any change in moment of inertia or
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Fig. 2. Comparison of the amplitude and phase of
the estimated annual variation in rotation with the
model based on ice cap sublimation and accre-
tion and solar tides. The phase is with respect to ¢
= 0°. The estimate labeled “Viking” is taken from

(1).
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Fig. 3. Comparison of the amplitude and phase of
the estimated semiannual variation in rotation with
the model based on ice cap sublimation and ac-
cretion and solar tides. The phase is with respect
to € = 0°. The estimate labeled “Viking” is taken
from (7).
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rotation rate. However, because of Mars’
orbital eccentricity, difference in elevation,
and difference in albedo, the pole caps are
not formed symmetrically. The unbalanced
waxing and waning of the Martian polar ice
caps results in seasonal changes in air pres-
sure at the Pathfinder and Viking lander
sites (19). If Mars has a liquid core, the
change in rotation rate will depend on
changes in the mantle polar moment of
inertia C_ (assumed here to include the
crust). Seasonal zonal winds, which are the
primary mechanism for momentum change
on Earth (20), are apparently much less
important for Mars. Assuming that the
north and south polar ice caps have uniform
thickness and similar angular extent, the
predicted change in rotation rate can be
inferred from the pressure history (I, 21)

ddp(mas) = 477sin(€ + 112.8°)
+ 204sin(2¢ + 181.7°)
+ 25sin(3€ + 172.5°)
+ 10sin(4¢ + 168.1°)

A secondary source of rotation variations is
the deformation of Mars’ figure by solar
tides. The predicted response is given by (1)

d3db(mas) = —k, ,MR*/C,,

97sin(€) + 62sin(2¢ + 2w, — 2¢)
+ 14sin(3€¢ + Zu)p — 2¢) + Tsin(2()
= 5.9sin(2¢ + 20, — 2)

where k,,  is the mantle tidal Love number
and w, is the longitude of periapsis mea-
sured from the intersection of the martian
orbit and the ecliptic. The factor k, MR?/
C,, ranges from 0.3 to 0.8 for plausible Mars
models, with 0.5 taken as a nominal value.
The estimated annual term is in reason-
ably good agreement with the model (Fig.
2). The statistically significant shift from
the previous result is thought to be due to
systematic effects in the ranging data that
were used exclusively in the previous anal-
ysis (1), whereas our seasonal estimates are
dominated by the Viking Doppler data. The
estimated semiannual term does not agree
as well with the model (Fig. 3). This may
indicate the needs for improvement in the
model, improvements in the treatment of
the data, or an unmodeled effect, such as
interaction of the surface with winds. The
estimated triannual and quarterly ampli-
tudes are in fair agreement with the model
but are not statistically significant (22).
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The Mars Pathfinder Atmospheric Structure
Investigation/Meteorology (ASI/MET)
Experiment

J. T. Schofield, J. R. Barnes, D. Crisp, R. M. Haberle,
S. Larsen, J. A. Magalhaes, J. R. Murphy, A. Seiff, G. Wilson

The Mars Pathfinder atmospheric structure investigation/meteorology (ASI/MET) ex-
periment measured the vertical density, pressure, and temperature structure of the
martian atmosphere from the surface to 160 km, and monitored surface meteorology and
climate for 83 sols (1 sol = 1 martian day = 24.7 hours). The atmospheric structure and
the weather record are similar to those observed by the Viking 1 lander (VL-1) at the same
latitude, altitude, and season 21 years ago, but there are differences related to diurnal
effects and the surface properties of the landing site. These include a cold nighttime
upper atmosphere; atmospheric temperatures that are 10 to 12 degrees kelvin warmer
near the surface; light slope-controlled winds; and dust devils, identified by their pres-
sure, wind, and temperature signatures. The results are consistent with the warm,
moderately dusty atmosphere seen by VL-1.

The ASI/MET experiment consists of a
suite of sensors designed to measure the ver-
tical structure of the atmosphere during en-
try, descent, and landing (EDL) and to study
martian surface meteorology and climate for
the duration of the Pathfinder mission (1, 2).
In situ vertical structure measurements were
made only twice by the Viking entry vehi-
cles (3), both during the daytime. In addi-
tion to adding a third profile, ASI/MET
provides the first nighttime observation, giv-
ing information about the diurnal variation
of vertical structure, particularly in the upper
atmosphere, which is inaccessible to existing
remote-sensing techniques. Both Viking
landers obtained records of atmospheric pres-
sure, temperature, and wind velocity at the
surface that extended over several Mars
years. More recent Earth-based, disk-aver-
aged microwave observations have been in-
terpreted to indicate episodic cooling of the
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martian lower atmosphere by about 20 K
relative to the conditions observed during
the Viking missions (4). By continuing the
Viking record after 21 years, ASI/MET re-
sults are able to determine whether martian
meteorology and climate have changed or
remained stable in the late northern sum-
mer. Improved measurement sensitivity and
temporal resolution (2) also reveal phenom-
ena not seen by Viking and, together with
temperature measurements at three levels,
give better information on the exchange of
heat and momentum between the atmo-
sphere and the surface.

The ASI/MET experiment combined
accelerometer and MET instruments (2).
The accelerometer instrument contained
science and engineering accelerometers
that each monitored accelerations along
three orthogonal axes. In each axis, the
maximum sensitivity was 20 wm/s® [2 X
1076 Earth gravities (g)], and the accelera-
tions expected during EDL were covered by
commandable measurement ranges of 16mg,
800mg, and 40g full-scale. The MET instru-
ment consisted of pressure, temperature,
and wind sensors. Pressure was measured
through a 1-m inlet tube that was exposed
to the atmosphere during parachute descent
as well as after landing (1, 2). The pressure
measurements have a maximum sensitivity
of 0.25 wbar, which is more than a factor of
100 better than that available to the Viking
landers (5). All the MET temperature and
wind sensors are mounted on a mast 1.1 m
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high, deployed at the end of a lander petal
to isolate it from spacecraft thermal con-
tamination (I, 2). Atmospheric tempera-
ture was measured by four thermocouples:
one designed to measure temperature dur-
ing parachute descent and three designed
for surface boundary layer measurements 25,
50, and 100 cm above the base of the mast.
All four thermocouples have time constants
of 1 to 2 s and sensitivities of 0.01 K. Wind
was measured by a six-segment hot-wire
sensor at the top of the mast, 1.1 m above
the mast base. The wires are heated by a
current passed in series through all six seg-
ments, and the temperature differences be-
tween low and high current modes for each
segment are used to determine wind speed
and direction.

The accelerometer and MET instruments
recorded data continuously throughout EDL
until about 1 min after impact at about
03:00 local solar time (LST). Regular surface
pressure, temperature, and wind measure-
ments by the MET instrument began about 4
hours after impact at 07:00 LST on sol 1 (1
sol = 1 martian day = 24.7 hours), and the
MET mast was deployed at 13:30 LST.

The science accelerometer detected the
upper atmosphere 160 km above the land-
ing site when the entry vehicle had a ve-
locity of 7.4 km/s relative to the atmosphere
and a flight path angle 14.8° below the
local horizontal. 1.5 min later, the entry
vehicle experienced a peak deceleration of
15.9g at an altitude of 33 km. After 3 min
(9 km) the parachute deployed, and at 3.4
min (7.4 km) the heat shield separated from
the lander, allowing the pressure sensor to
begin unobstructed measurements of the at-
mosphere. The inflation of shock-absorbing
airbags at 5.1 min (0.3 km) terminated the
unobstructed pressure measurements, and
descent rocket firing at 5.2 min (0.1 km)
ended the direct measurement of aerody-
namic decelerations. The first impact of the
probe with the martian surface occurred 5.3
min after it entered the atmosphere. In the
first minute after impact, the lander
bounced 15 times and pressure sensor data
indicated that it rolled 10 m vertically
downhill. It came to rest about a minute
later at a site 3389.7 km from the center of
mass of Mars (6). Surface acceleration mea-
surements of 3.716 m/s* agree with values of
3.717 m/s* calculated for the lander loca-
tion and height (7), providing a verification
of accelerometer gain calibration.

Because the engineering accelerometers
were used to control parachute deployment
and remained in their least sensitive 40g
scale, atmospheric profiles were derived
from science accelerometer data only,
which were logged at 32 Hz throughout
EDL. MET pressure and temperature data
were collected at 2 Hz during the parachute
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