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accumulation in cells that express NFAT4
(Fig. 3). The NFAT4 isoform therefore
serves to integrate negative signals from
JNK into the NFAT signaling pathway.
Positive signals to calcium-stimulated
NFAT4 derive, in part, from the Ras sig-
naling pathway (Fig. 4). Together, these
findings indicate that NFAT4 may mediate
signal-specific responses in activated cells.
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Independent and Additive Effects of Central
POMC and Leptin Pathways on Murine Obesity

Bruce A. Boston, Kathryn M. Blaydon, Jeffrey Varnerin,
Roger D. Cone*

The lethal yellow (AY/a) mouse has a defect in proopiomelanocortin (POMC) signaling in
the brain that leads to obesity, and is resistant to the anorexigenic effects of the hormone
leptin. It has been proposed that the weight-reducing effects of leptin are thus trans-
mitted primarily by way of POMC neurons. However, the central effects of defective
POMC signaling, and the absence of leptin, on weight gain in double-mutant lethal yellow
(A¥/a) leptin-deficient (lep°?/lep°?) mice were shown to be independent and additive.
Furthermore, deletion of the leptin gene restored leptin sensitivity to AY/a mice. This result
implies that in the AY/a mouse, obesity is independent of leptin action, and resistance
to leptin results from desensitization of leptin signaling.

Serum concentrations of the hormone lep-
tin (1) correlate well with body mass index
in both humans and rodents (2). The long
form of the leptin receptor has been detect-
ed in multiple hypothalamic regions includ-
ing the arcuate nucleus (3), where it com-
pletes a feedback loop that sends informa-
tion on peripheral energy stores to the hy-
pothalamus, altering both food intake and
metabolic rate. Absence of leptin results in
extreme obesity in the obese (lep™/lep®)
mouse.

Obesity in another rodent model, the
lethal yellow (AY/a) mouse (4), is caused by a
dominantly inherited promotor rearrange-
ment at the agouti locus that results in
constitutive ectopic expression of the Ag-
outi peptide (5). Agouti is a potent antag-
onist of the hypothalamic melanocortin-4
receptor (MC4-R) (6), and interruption of
signaling at MC4-R increases feeding be-
havior in mice (7-9). Thus, desacetyl-a—
melanocyte-stimulating hormone derived
from arcuate nucleus POMC neurons, the
primary source of ligand for MC4-R, ap-
pears to play a tonic inhibitory role in feed-

B. A. Boston, and K. M. Blaydon, Department of Pediat-
rics, Oregon Health Sciences University, Portland, OR
97201, USA.

J. Varnerin, Department of Genetics and Molecular Biol-
ogy, Merck Research Laboratories, Rahway, NJ 07065,
USA.

R. D. Cone, Vollum Institute for Advanced Biomedical
Research, Oregon Health Sciences University, Portland,
OR 97201, USA. .

*To whom correspondence should be addressed. E-mail:
cone@ohsu.edu

ing and energy storage. Leptin levels in the
AYJa mouse, as well as other rodent obesity
models, are elevated (2), reflecting the in-
crease in adipose tissue. The AY/a mouse is
also resistant to leptin administered periph-
erally or intracerebroventricularly (10). Pe-
ripheral resistance to leptin occurs in other
obese-rodent models (2, 11), and it has
been argued that both obesity in the AY/a
mouse as well as common forms of human
obesity may result from genetically deter-
mined resistance to leptin feedback (10, 12)

To study the relation between leptin and
POMC signaling pathways on weight ho-
meostasis and the potential dependence of
leptin action on POMC signaling, we gen-
erated a lethal yellow obese (AY/a lep®®/lep®)
double-mutant mouse. C57BL/6] mice with
either the AY/a or lep®’/+ genotypes were
crossed to create AY/a lep®®/+ breeders.
These animals were bred to create the dou-
ble-mutant AY/a lep®®/lep®® mice, “which
were identified by their yellow coat color
and obese phenotype, and their genotype
was confirmed by allele-specific oligonucle-
otide hybridization (13).

If defective POMC signaling in the AY/a
animal causes obesity solely by blocking the
anorexigenic leptin signal, then introduc-
tion of the AY allele into the leptin-defi-
cient lep®/lep® background should have no -
added effect on weight gain or metabolism
in this model. However, because of the
extreme rate of weight gain that results
from leptin deficiency, the modest effects of
the AY allele on weight might be difficult to
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detect in the intact lep®/lep®® animal. Lep-
tin deficiency in the lep®®/lep®® mouse mark-
edly increases glucocorticoid levels, which
indirectly are reponsible for a large percent-
age of the obesity phenotype in these ani-
mals. To examine the direct effects of leptin
and POMC pathways in the brain, we first
measured weight gain in animals adrenalec-
tomized and then maintained on normal
levels of corticosterone.

The weight gain of female mice from
each genotype, fed normal Chow ad libi-
tum, was measured over a period from 6 to
31 weeks after birth. Before the experiment,
animals were adrenalectomized and placed
on maintenance glucocorticoids supplied in
drinking water (14). The presence of the AY
allele increased weight gain to a similar
extent in both the wild-type and leptin-
deficient lep®®/lep®® backgrounds, indicating
that the obesity-inducing actions of defec-
tive POMC signaling are leptin-indepen-
dent (Fig. 1A). Increased linear growth,
another phenotype induced by the AY allele
(15), did not appear to explain the differ-
ence in weight, because the adrenalecto-
mized AY/a , A¥/a lep®/lep®® , and lep®®/lep®®
mice all demonstrated the same 10% in-
crease in linear growth relative to control
ala mice (16).

Fasting serum insulin and glucose con-
centrations were determined monthly dur-
ing the course of the experiment in the
adrenalectomized female mice (17). AY
alone produced a mild late-onset hyperin-
sulinemia (18, 19), whereas leptin deficien-
cy produced an early, more significant rise
in serum insulin. The effects of defective
POMC signaling and leptin deficiency on
serum insulin also appeared to be additive
(Fig. 1B). Fasting serum glucose concentra-
tions in the AY/a lep®/lep®® and afa lep®®/lep®®
mice, however, were not significantly dif-
ferent (16). When mice of similar weights
were compared (Fig. 1C), the serum insulin
concentrations in the AY/a lep®’/lep®® were
increased compared with those in afa lep®®/
lep®® animals. Additionally, afa lep®®/lep®
animals demonstrated a linear relation be-
tween weight and serum insulin, suggesting
that the increase of insulin levels in the
absence of leptin is partially a function of
the increased adipose mass. In contrast, in-
troduction of the AY allele into the lep/
lep®® background removed any significant
correlation between weight and insulin lev-
els, suggesting that Agouti inhibition of the
POMC signal causes a dysregulation of in-
sulin by a second mechanism independent
of adipose mass.

If the AY allele induces obesity in a
leptin-independent manner, implying that
MC4-R signaling is not required for the
central anorexigenic actions of leptin, then
why are AY/a mice resistant to an increase
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in either endogenous (2) or exogenous lep-
tin (10)? To test the hypothesis that
MC4-R signaling is not required for the
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Fig. 1. The effects of leptin deficiency and Agouti
antagonism of POMC signaling on weight gain
and serum insulin concentrations. (A) Weight
curves. (B) Fasting serum insulin and (C) weight
versus serum insulin scatter plot. All data are from
adrenalectomized C57BL/6J female wild-type
(@a +/+)(n = 7), lethal yellow (AY/a +/+) (n = 7),
obese (a/a lep°P/lep®) (n = 7), and double-mu-
tant lethal yellow obese (AY/a lep©?/lep®) (n = 5)
mice (17). Data are reported as the mean + SE.
Weight curves were compared by two-way anal-
ysis of variance (ANOVA). All curves were signifi-
cantly different (P < 0.0001). Serum insulin con-
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weight-reducing action of leptin, we exam-
ined the effects of leptin administration in
the four mouse genotypes. After a 4-day
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centrations in lethal yellow obese mice were compared with those in obese mice by the two-tailed t test
(P < 0.05 at 4 months and P < 0.01 at 5, 6, and 7 months). Linear regression of insulin versus weight
in the obese mice was significant (P = 0.02) with r = 0.46. Linear regression of insulin versus weight in

lethal yellow obese mice was not significant.
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Fig. 2. Effect of leptin administration on leptin-
deficient lethal yellow obese (AY/a lep°/lep°?)
mice. (A) Weight change from baseline (day —4)in
adrenalectomized 8-month-old female mice from
the colony in Fig. 1. Mice were given subcutane-
ous saline injections twice daily until day 0, and
were then given leptin (2 mg/kg) twice daily. Sym-
bols for the different phenotypes are as in Fig. 1.
(B) Fasting serum insulin concentrations before
and after leptin administration. (C) Average daily
food intake before (days —4 to —1) and after (days
1 to 5) leptin administration. Data are reported as
the mean + SE. Weight change from baseline
curves was compared by two-way ANOVA. All
curves were significantly different (P < 0.001) with
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the exception of AY/a lep°P/lep? versus a/a lep®P/lep° and AY/a +/+ versus a/a +/+ (P > 0.01). The
effect of leptin on serum insulin and food intake was analyzed by the one-tailed ¢ test (pre- versus
postleptin administration: *P < 0.05, *P < 0.01, **P = 0.001). The number of mice used in these
experiments is as follows: a/a +/+ (n = 3), AYa +/+ (n = 1), a/a lep°?/lep® (n = 3), and AY/a lep°?/lep®

(n=3).

* VOL. 278 » 28 NOVEMBER 1997 * www.sciencemag.org

i

g



course of saline, the same adrenalectomized
female mice used for analysis of weight gain
were injected twice daily with human leptin
(20). Wild-type and AY/a mice were resis-
tant to leptin relative to the lep®®/lep®® mice,
as measured by the inability of leptin to
induce weight loss (Fig. 2A), lower serum
insulin (Fig. 2B), and decrease food intake
(Fig. 2C). In contrast, absence of the leptin
gene restored full leptin sensitivity to the
AY/a lep®®flep®® mice, as demonstrated by use
of all three measures (Fig. 2, A to C).

To examine the effect of circulating glu-
cocorticoids, gender, and age on leptin sen-
sitivity in the AY/a lep®/lep®® mouse, we
administered leptin to young nonadrenalec-
tomized mice (Fig. 3A). Restoration of lep-
tin responsiveness by deletion of the leptin
gene in the AY/a mouse was independent of
adrenal status. Whereas full leptin respon-
siveness was restored in adrenalectomized
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and normal female AY/a lep®/lep®® mice,
leptin responsiveness was only partially re-
stored in male AY/a lep®/lep®® animals. In
agreement with previously reported data
(10), both male and female AY/a mice ex-
hibited greater leptin resistance than
C57BL/6] controls.

Leptin administration also produced a
reduction in serum insulin concentrations
in AY/a lep®®/lep®® and lep®/lep® young fe-
males by a factor of 15 (Fig. 3B) and in AY/a
lepflep®® and lep°?/lep®® males by a factor of
5 and 15, respectively (Fig. 3C), indicating
a significant restoration of leptin sensitivity
in nonadrenalectomized AY/a lep®®/lep®®
mice. However, the serum insulin concen-
tration in leptin-treated lep®/lep®® males was
significantly lower than that in leptin-treat-
ed AY/a lep®®/lep®® males. This observation
suggests there is a male-specific leptin-inde-
pendent pathway for regulation of insulin
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Fig. 3. Effect of leptin administration in young male and female nonadrenalectomized leptin-deficient
lethal yellow mice (AY/a lep°?/lepP). (A) Weight change from baseline (day —2) in 3-month-old male
(open symbols) and female (closed symbols) mice. Symbols for the different phenotypes are as in Fig. 1.
Mice were given subcutaneous saline injections twice daily until day 0, and were then given leptin (2
mag/kg) twice daily. (B) Fasting serum insulin concentrations in female mice before and after leptin
administration. (C) Fasting serum insulin concentrations in male mice before and after leptin adminis-
tration. (D) Serum corticosterone concentrations before and after leptin administration (26). Data are
reported as the mean = SE. Weight change from baseline curves was compared within gender by
two-way ANOVA. All curves were significantly different (P < 0.005) with the exception of female
AY/a lepP/lep°® versus a/a lep®P/lep® and male AY/a +/+ versus a/a +/+ curves (P > 0.01). The effect
of leptin on serum insulin and corticosterone concentrations was analyzed by the one-tailed t test (pre-
versus postleptin administration: *P < 0.05, *P < 0.01, **P < 0.001). Postleptin serum insulin
concentrations in the male A"/a lep®?/lep®® mice were compared with those in a/a lep°?/lep°? mice by
the two-tailed t test (P < 0.05). The number of mice used in all experiments except male serum insulin
is as follows: a/a +/+ (n = 3), Aa +/+ (n = 3), a/a lep®?/lep°® (n = 3), and AY/a lep°?/lep°® (n = 3). The
number of mice used in the male serum insulin experiment is as follows: a/a +/+ (n = 6), A¥a +/+ (n
= 6), a/a lep°?/lep°? (n = 6), and AY/a lep°?/lep® (n = 6).
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by POMC neurons. Alternatively, the AY
allele may cause a minor defect in this
specific leptin response in the male only.

AY/a mice have normal concentrations of
serum corticosterone (19, 21), whereas lep®?/
lep®® mice have increased basal corticosterone
levels. The AY allele had no effect on basal
serum corticosterone in the lep®®/lep®® back-
ground (Fig. 3D). Furthermore, leptin admin-
istration reduced corticosterone to normal
levels in both the lep®?/lep® and AY/a lep®/
lep® mice. Adrenalectomy revealed that in-
creased glucocorticoids due to the absence of
leptin are responsible for much of the hyper-
insulinemia in the lep®®flep®® mice (compare
Fig. 1B to Fig. 3, B and C). The elevated
glucocorticoid levels also increased fat depo-
sition, as 3-month-old nonadrenalectomized
lep°?/lep® mice were ~60% heavier than adre-
nalectomized lep®/lep® mice (16).

These data demonstrate that the AY
gene, and by inference disruption of central
POMC signaling, does not cause obesity by
acting as a genetic roadblock to the central
anorexigenic action of leptin. The ability of
Agouti to induce weight gain irrespective of
the leptin state of the animal argues strong-
ly that the POMC neurons can act inde-
pendently of leptin in their actions on en-
ergy homeostasis. It remains likely that
some aspect of leptin function not tested
here is mediated by POMC neurons, given
that mRNA encoding the long form of the
receptor is expressed in some POMC-con-
taining arcuate nucleus neurons (22). Fur-
thermore, a recent report shows that, with-
in a narrow dose range, an antagonist of the
MC3 and MCH4 receptors is able to block
the acute inhibition of feeding by leptin in
the rat (23). However, the results of the
genetic studies shown here argue that nor-
mal POMC signaling is not required for the
long-term ability of leptin to reduce weight,
serum insulin, or serum corticosterone. The
reduced sensitivity to leptin-induced weight
loss and reduction in serum insulin in the
male AY/a lep®flep®® animal indicates the
existence of a minor, sexually dimorphic
defect in leptin signaling resulting from Ag-
outi inhibition of MC4-R. Alternatively,
the data could simply highlight a male-
specific effect of POMC signaling down-
stream and independent of leptin action,
reflected also by the observation that AY/a
males gain weight faster and are more hy-
perinsulinemic than AY/a females (19).

Apparent leptin resistance is a hallmark
of obesity in multiple species (10, 11); how-
ever, our data suggest that it may be erro-
neous to assume that leptin resistance is
indicative of genetic defects blocking leptin
action. Rather, the data presented for the
AY/a animal show that removal of leptin
from this strain restores complete leptin
sensitivity, strongly arguing that animals are
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leptin resistant as a consequence of desen-
sitization to further leptin action. The ab-
sence of leptin in the lep®®/lep®® animal is
responsible for the deregulation of two
genes expressed in the arcuate nucleus: neu-
ropeptide Y (24) and Agouti-related tran-
script, a newly described brain homolog of
Agouti (8, 9). The expression levels of both
these genes in the AY/a animal (9, 25)
further indicates a normal sensing of leptin
in the arcuate nucleus of these mice. Given
the apparent independence of the POMC
and leptin pathways with regard to energy
and insulin homeostasis, additional work
will be required to determine which periph-
eral or centralsignals are dependent on the
POMC neurons for their integration into
the energy homeostasis equation.
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