D (Table 2 and Fig. 2). The expression of
Ich-1 in those cells was comparable to that
in 2fTGH cells, but the amount of Cpp32
was reduced (Fig. 1B). Therefore, p84 and
S727A have different apoptotic profiles.
We conclude that the constitutive expres-
sion of Ich-1 and Cpp32 does not require
formation of STAT1 homodimers. Howev-
er, STAT1 might form complex transcrip-
tion factors by interacting with other pro-
teins (24).

STATI1-null mice are defective in all re-
sponses to [FN-a or [FN-y (25, 26), as ex-
pected from the properties of STAT1-null
human cells (27}. However, in contrast to
Cpp32-null mice (28), STAT1-null mice
show no gross developmental abnormalities
(25, 26). If, like human cells, mouse cells
require STAT1 for efficient expression of
Cpp32, the reduced levels of this protease in
STAT1-null mouse cells must still be suffi-
cient to support the apoptosis required for
nearly normal development. Apoptosis of
underlying keratocytes that follows the abla-
tion of corneal epithelial cells is grossly de-
fective in STAT1-null mice (29), revealing
that at least one form of stress-induced apo-
ptosis is defective in the absence of STAT1.

. STATI is also required for constitutive

expression of LMP2 and LMP7 (low molec-
ular mass polypeptides 2 and 7) (30), in
addition to lce, Ich-1, Cpp32, and IRF-1.
The finding that STAT1 is required for
efficient constitutive expression of several
genes reveals a more general role for this
ubiquitous transcription factor.
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Independent Photoreceptive Circadian Clocks
Throughout Drosophila

Jeffrey D. Plautz, Maki Kaneko, Jeffrey C. Hall, Steve A. Kay*

Transgenic Drosophila that expressed either luciferase or green fluorescent protein
driven from the promoter of the clock gene period were used to monitor the circadian
clock in explanted head, thorax, and abdominal tissues. The tissues (including sensory
bristles in the leg and wing) showed rhythmic bioluminescence, and the rhythms could
be reset by light. The photoreceptive properties of the explanted tissues indicate that
unidentified photoreceptors are likely to contribute to photic signal transduction to the
clock. These results show that autonomous circadian oscillators are present throughout
the body, and they suggest that individual cells in Drosophila are capable of supporting

their own independent clocks.

Clircadian oscillators have been localized in
several organisms. For example, the supra-
chiasmatic nucleus (SCN) is important for
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mammalian rhythms (1), whereas Iguana
iguana has at least three independent oscil-
lators: the retina, parietal eye, and pineal
gland (2). Sparrows show activity rhythms
that can be altered by lesioning the pineal
gland (3); this operation reveals the influ-
ence of other oscillators on the bird’s behav-
ior. The brain controls behavioral rhythms
in moth (4) and Drosophila (5, 6), whereas
sperm release in the moth is controlled by an
independent oscillator (7). Recently, free-
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running thythms have been demonstrated in
the Drosophila ring gland (8) and Malpighian
tubules (9). At a molecular level, two differ-
ent Drosophila clock genes, period (per) (10)
and timeless (tim) (11), have been identified.
The transcripts and proteins from both of
these genes cycle daily in abundance, and
both genes are needed to maintain a biolog-
ical clock (12).

In mammals, all demonstrated clock in-
put comes from the eye (I3), although the
exact photoreceptor is unknown (14). Pho-
toreceptors within the brain can mediate
thythms in birds (15) and insects (4, 16).
Drosophila that lack all known photorecep-
tive organs can still transmit light informa-
tion to the clock (17), indicating the exis-
tence of unidentified circadian photorecep-
tors within the animal.

Functional per in the head of the fly has
been explicitly shown to be essential for
one output: behavior (6). Eclosion (10) and
transcriptional control (I18) have been
shown to require per, but without any spe-
cific localization of the message or its pro-
tein. PER protein has been detected in
many tissues throughout the animal (19).
Although specific functions outside the
head are unknown, per in these tissues may
be needed for localized clock function.
These per-dependent oscillators could be
targets for signals from the head; however,
light sensitivity is a characteristic of a fully
autonomous oscillator that can receive
stimuli from the environment, transmit this
information to the oscillator, then use the
oscillator to affect downstream clock-con-
trolled functions.

per-driven bioluminescent oscillations
occur in living per-luc Drosophila (per is
fused to the luciferase gene luc) (20-22).
These thythms are entrainable by light and
free-run in constant darkness (20). To ex-
amine the circadian autonomy of Drosophila
tissues, we monitored rhythmic biolumines-
cence from cultured dissociated body seg-
ments (head, thorax, or abdomen) from
per-luc animals (23, 24); per-driven green
fluorescent protein (GFP) was used concur-
rently as a bright spatial expression marker.

Each of the three segments are capable
of rhythmic bioluminescence (Fig. 1) in
light-dark (LD) conditions. Changing the
conditions to constant darkness (DD) re-
sulted in a gradual decrease in amplitude.
The cultures were able to reentrain to a new
LD cycle, where the new onset of light
occurred 6 hours later than the free-running
subjective dawn. Reentrainment occurred
within one cycle, with the main biolumi-
nescent peak falling about 20 hours after
lights-on, just as it did in the initial LD
cycle. The waveform and phase of the
rthythms from all three segments were near-
ly identical, and there was very little noise
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in the individual traces, especially when
compared with whole-animal records (20—
22). Also, there was no evidence of the
second peak of bioluminescence that was
previously reported in whole-animal studies

Fig. 1. Bioluminescence
rhythms in cultured body
segments. per-driven
GFP expression can be
seen throughout the
whole fly (A). Individual
(B) heads, (C) thoraxes,
and (D) abdomens were
individually cultured in LD
and DD and monitored
for bioluminescence ex-
pression levels. Of the
cultured segments 79%
(221/279) demonstrated
rhythms in LD; 59% (130/
222) demonstrated at
least two cycles in DD,
and 82% (182/222) be-
came arrhythmic within
four cycles in DD. Filled
bars, darkness; open
bars, light; gray bars sub-
jective light. CPS, counts
per second.
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(20, 21), indicating that this feature likely
arises from a whole-animal physiological-
bioluminescent phenomenon rather than as
a direct feature of per transcription. The pro-
boscis and antenna (Fig. 2ZA) expressed per-
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driven GFP (23, 25); the bright green signal
was easily distinguishable from the yellow
autofluorescence [compare (26)]. Like the
whole-body segments, the proboscis (Fig.
2B) and antennae (Fig. 2C) are also capable
of maintaining oscillations in LD and DD
(although, as in whole-body segments,
thythmicity damps in DD). GFP expression
was also detected at the near-single-cell level
in legs (Fig. 2D) and wings (Figs. 2F and 3B).
GFP was present in these tissues in chemo-
sensory cells (Fig. 3) (27), which are also
found in the proboscis and antennae (27).
The leg (Fig. 2E) and wing oscillators (Fig.
2F) showed rhythmic per-driven biolumines-
cence. As with body segments, the tissue
oscillators are capable of rapid resetting in
response to light. Other tissues throughout
the body that displayed rhythmicity include
the eyes, Malpighian tubules, and testes
(28); the ovaries, though, did not display any
appreciable cycling (28, 29).

Our imaging and analysis of per-gal4;
UAS-GFP flies showed broad per expression
throughout the fly (Fig. 1A), supporting
previous reports of widespread per expres-
sion (19). Several lines of evidence confirm
that our fluorescent images (Figs. 1A, 2A,
2D, and 3B) do not represent ectopic ex-
pression: multiple staining studies with per-
lacZ fusions and antibodies to PER have
shown per expression similar to that shown
here (19, 30); our bioluminescent studies in
culture show that all of the examined tis-
sues that express fluorescence also express
cycling per-driven bioluminescence (Figs. 1
to 3); and previous single-photon imaging
(20) [reconfirmed in recent biolumines-
cence imaging (28)] showed per-luc biolu-
minescence in the legs and wings, as well as
other parts of the animal. Although the
fluorescence pattern does not exactly reflect
that of native per expression (as assayed
immunohistochemically), inconsistencies
with this line occur when fluorescence is
not seen where per expression has otherwise

been detected (notably the eye; see Fig.
1A). We have at no time observed external
GFP fluorescence where per has not been
otherwise detected.

Because there are numerous oscillators in
the fly, each of these oscillators are photore-
ceptive, and per is expressed in single cells,
we hypothesize that the Drosophila clock can
operate at a cell-autonomous level. Each
clock cell may be capable of photoreceptiv-
ity and endogenous rhythm maintenance to
some extent. Independent clock cells within
a circadian tissue can also explain the overall
arrhythmicity of a tissue after several days in
DD. Whole animals free-run with a range of
near-circadian, but different, periods [as
monitored by bioluminescence (21)]. In LD
conditions, single cells are resynchronized
every 12 hours by light transitions; however,
cells free-running with a range of periods
similar to whole animals will mathematically
yield net arrhythmicity in a matter of days.
Single-cell monitoring of cells in a tissue as it
becomes arrhythmic will be necessary to tell
whether the arrhythmicity is due to cell
asynchronicity [compare (31)], or the grad-
ual “winding-down” of the clock itself at a
cellular level.

In constant conditions, RNA oscilla-
tions in the adult body damp in DD with
about the same kinetics reported here, but
that rhythmicity persists in the head (29).
The brain is the source of control for loco-
motor behavior (5, 6), and such behavior
oscillates for weeks in constant conditions
(32). Although the brain rhythms do not
apparently damp over several days in con-
stant conditions, other parts of the head do
(the proboscis, eyes, and antennae; Fig. 2, B
and C). The asynchrony within these tis-
sues, which are on the surface of the head,
most likely masks the synchronized brain
thythmicity deep within the head.

The function or functions of per outside
the head are unknown (19). A particularly
interesting feature of the GFP expression

Fig. 3. GFP expression in wing chemo-
sensory cells. (A) Detail of an anterior
wing margin. Red arrows show individ-
ual chemosensory cells. (B) Superim-
position of per-driven GFP fluores-
cence on the same wing margin. Signal
co-localizes with the basal cells of the
sensory bristles, as well as fluores-
cence from chemosensory cells on the

opposite side of the wing margin (blue
arrows).
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pattemn is its labeling of chemosensory cells.
This pattern specifically identifies structures
at the base of chemoreceptor bristles in the
proboscis, antennae, anterior wing margins,
and legs (Figs. 1A, 2A, 2D, 2F, and 3) (27).
Moreover, per-driven bioluminescence in
these tissues is thythmic (Fig. 2, B, C, E, and
G), showing that there is a functional clock
in these cells. These cells are spatially inde-
pendent of each other (on the basis of non-
contiguous fluorescence) and are capable of
cycling and entraining without an attached
head. The presence of a functional clock
implies circadian regulation of chemosensory
sensitivity, analogous to the circadian regu-
lation of sensitivity thresholds in luminance
(33) and pain (34) reported in mammals.
Although the evidence for clock control of
sensory thresholds in the fly is still circum-
stantial, the presence of independent clocks
along with examples of similar rhythmic
phenomena in other systems indicates a cen-
tral role for per-dependent clock functions in
tissues outside the head.

Every known oscillating tissue in the fly
has shown the capacity for light perception.
Also, each dissociated segment is thythmic
with the same phase and waveform. This
raises the possibility that the head, which
was previously believed to be the master
oscillator in the fly, does not coordinate all
rhythms throughout the animal. In this
case, light, which has the potential to affect
all parts of the fly simultaneously, serves as
the master coordination signal. The asyn-
chrony of independent clock cells over sev-
eral days of free-run should not be of prac-
tical concern to the whole animal because
flies in the wild almost always have an
environmental light cycle. This control
mechanism could reasonably be extended
to other animals (although it will likely be
more complicated in higher eukaryotes).
The mouse circadian gene, Clock, is ex-
pressed throughout the animal (35), indi-
cating that mammals may have oscillators
throughout the body; also, a mammalian
homolog of Drosophila per has been recently
identified (36) and found to be localized
throughout the body. Like the fly, much of
the evidence for a central oscillator in
mammals has come from observing a single
output: behavior. Similarly, the simple in-
terpretation of a master controlling oscilla-
tor may need to be revised with the closer
examination of multiple outputs and isolat-
ed multiple oscillators.
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The Filamentous Phage plV Multimer Visualized
by Scanning Transmission Electron Microscopy

Nora A. Linderoth, Martha N. Simon, Marjorie Russel*

A family of homomultimeric outer-membrane proteins termed secretins mediates the
secretion of large macromolecules such as enzymes and filamentous bacteriophages
across bacterial outer membranes to the extracellular milieu. The secretin encoded by
filamentous phage f1 was purified. Mass determination of individual molecules by scan-
ning transmission electron microscopy revealed two forms, a unit multimer composed
of about 14 subunits and a multimer dimer. The secretin is roughly cylindrical and has
an internal diameter of about 80 angstroms, which is large enough to accommodate
filamentous phage (diameter of 65 angstroms).

Filamentous phage—encoded pl1V is an out-
er-membrane protein required for phage as-
sembly that is not a part of the virus parti-
cle. It has sequence similarity to a family of
bacterial proteins that are essential compo-
nents of the type Il and type Il protein
secretion systems that have been identified
in many pathogenic Gram-negative species
(I, 2). The members of this protein family
(called secretins) are believed to play simi-
lar roles in mediating translocation of sub-
strates across the outer membrane. Gene IV
could be derived from a bacterial gene be-
cause some phages contain the gene in dif-
ferent parts of their otherwise colinear ge-
nomes and CTX, the lysogenic filamentous
phage of Vibrio cholerae that encodes chol-
era toxin (3), lacks it entirely; CTX may use
a V. cholerae secretin for phage assembly. In
addition to a secretin, the type 11, type 111,
and phage assembly systems include a pro-
tein containing an essential nucleotide-
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binding motif. The remaining components
(~13 for type Il secretion, ~20 for type il
secretion, and 9 encoded by filamentous
phage) are related within, but not between,
systems.

Bacteria productively infected by fila-
mentous phage remain viable and can con-
tinue to grow and divide indefinitely while
producing and releasing phage particles.
During assembly, the cytoplasmic single-
stranded DNA phage genome is extruded
through the cytoplasmic membrane where
it becomes coated with the phage-encoded
capsid proteins that reside in the cytoplas-
mic membrane before their incorporation
into phage (4). Secretion across the outer
membrane appears to be concomitant with
assembly because periplasmic phage has not
been detected. Thus, phage assembly and
the type II and III systems all require trans-
port of macromolecules across two bacterial
membranes.

The plV protein exists as a homomul-
timer that has been previously estimated to
consist of 10 to 12 monomers (5). Several of
the bacterial homologs form mixed multim-
ers with pIV in vivo, implying structural
relatedness and suggesting that they them-

1635





