function with mAb to IFN-y reduce the
efficacy of IL-12 (16, 17). Although V 14
NKT cells are the major source of IFN-y
(14), IEN-y may not be important in the
effector phase. This is because high doses of
mAbs to [FN-y do not inhibit V.14 NKT
cell-mediated cytolysis (Fig. 3E).

We examined the potential activity of
NK and T cells in vitro in the mutant mice;
both NK-mediated and T cell-mediated
killing functions were potent. The NK ac-
tivity induced by polyinosinic-polycytidylic
acid [poly(I:C)] was as potent in ] 2817~
mice as in wild-type mice (Fig. 4A). Simi-
larly, significant allospecific CTL activity
was detected on P815 (H-29) and BALB/c
(H-29) concanavalin A (ConA) blasts, but
not on EL-4 (H-2P), in ] 2817 mice to the
same extent as in wild-type mice (Fig. 4B).
Thus, NK and conventional T cells in
J,2817" mice are functionally active, yet
not indispensable for tumor rejection upon
IL-12 stimulation.

The primary effect of IL-12 on V14
NKT cells is also supported by the fact that
IL-12 causes an increase in the actual num-
bers of V,14 NKT cells (about a fourfold
increase; 1.5 X 10° to 6 X 10°) and in their
cell volume (1.3 to 2.5-fold increase) (21).
It is now clear that a reevaluation of NK
and T cell functions in the absence of V,14
NKT cells may alter our understanding of
the functions of various subsets of lympho-
cytes in vivo.
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CD1d-Restricted and TCR-Mediated Activation
of V_14 NKT Cells by Glycosylceramides

Tetsu Kawano, Junging Cui, Yasuhiko Koezuka, Isao Toura,
Yoshikatsu Kaneko, Kazuhiro Motoki, Hitomi Ueno,
Ryusuke Nakagawa, Hiroshi Sato, Eisuke Kondo,
Haruhiko Koseki, Masaru Taniguchi*

Natural killer T (NKT) lymphocytes express an invariant T cell antigen receptor (TCR)
encoded by the V_14 and J_281 gene segments. A glycosylceramide-containing a-
anomeric sugar with a longer fatty acyl chain (C,g) and sphingosine base (C,g) was
identified as a ligand for this TCR. Glycosylceramide-mediated proliferative responses
of V14 NKT cells were abrogated by treatment with chloroquine-concanamycin A or by
monoclonal antibodies against CD1 dNBB, CD40/CD40L, or B7/CTLA-4/CD28, but not
by interference with the function of a transporter-associated protein. Thus, this lym-
phocyte shares distinct recognition systems with either T or NK cells.

An unusual lineage of lymphocytes, V14
NKT cells, are characterized by their devel-
opment before thymus formation (1), their
expression of an invariant TCR encoded by
the V14 and ]J,281 gene segments (2, 3)
mainly associated with V8.2 (4), and by
the coexpression of the I\FKl.l receptor, a

marker of NK cells (5). The invariant V 14

TCR is essential for the development and
function of V_ 14 NKT cells (6-8). Con-
trary to the general rule that the interaction
of the TCR with the major histocompati-
bility complex (MHC) molecules leads to
the development of T cells, V14 NKT cells
are selected by CD1d, a nonclassical class Ib
molecule (9); mutant mice deficient in
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CD1d lack V14 NKT cells (10). However,
a ligand for invariant V14 TCR has not
yet been identified. Here, we attempt to
define a ligand with which to specifically
activate V_14 NKT cells and characterize
their activation mechanisms.

Because another CD1 molecule, human
CD1b, presents glycolipids (11, 12), and
because the development and selection of
V14 NKT cells are independent of trans-
porter-associated protein (TAP) essential
for peptide presentation on MHC (13), we
studied glycolipids as candidate V14 TCR
ligands. Synthetic glycolipids (14) were
used to avoid effects of minor contaminants
in biological samples. Moreover, we gener-
ated V14 NKT mice expressing the invari-
ant V, 14 and V8.2 transgenes in a recom-
bmatlon actlvatmg gene (RAG)—deficient
background (RAG™/~ V14 V8. 2t2) that
only have V_14 NKT cells, but no T, B, or
NK cells (15) Spleen cells from V 14 NKT
mice were cocultured with fractionated
dendritic cells (DCs) from NK-only
(RAG™/7) mice (no T, B, or V_14 NKT
cells) pulsed with various glycosylcera-
mides, and their proliferative responses
were measured.

V_14 NKT cells incorporated [*H]thy-
midine (PH]TdR) after stimulation with
a-galactosylceramide (a-GalCer), whereas
activation with ceramide itself or B-galac-
tosylceramide (B-GalCer) resulted in no
proliferative responses (Fig. 1, A and C).
Because a-glucosylceramide (a-GlcCer) as
well as a-GalCer stimulated V14 NKT
cells readily, the a-anomeric conformation
of sugar moiety is essential. Indeed, in dig-
lycosylated ceramides (Fig. 1, B and C), the
a-anomeric configuration of the inner sugar
is important. Gala1-6Gala1-1'Cer, Gala1-
6Glcal-1'Cer, Galal-2Galal-1'Cer, or
GalB1-3Galal-1'Cer, whose inner sugar is
either a-glucose or a-galactose despite their
a- or B-anomer of the outer sugar moiety,
could stimulate V14 NKT cells, whereas
GalB1-4GIcB1-1'Cer with the B-anomer
inner sugar could not.

Because a-GalCer and a-GlcCer, which
differ only in the configuration of the 4-
hydroxyl group on the carbohydrate,
showed no functional differences, the 4-
hydroxyl configuration of the sugar seems
not to be important. However, a-mannosyl
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ceramide (a-ManCer), which showed no
stimulatory activity, has the 2-hydroxyl
group with an axial configuration that dif-
fers from that with an equatorial bond on
a-GalCer or a-GlcCer, suggesting the im-
portance of the configuration of the 2-hy-
droxyl group on the sugar moiety, probably
for the TCR contact site of this glycolipid
(Fig. 1, A and C).

A mutant derivative lacking the 3- and
4-hydroxyl groups on the phytosphingosine
of a-GalCer(3,4-deoxy a-GalCer) was not
stimulatory, indicating that the 3,4-hydrox-
yl groups of the phytosphingosine are also
important (Fig. 1, A and C). Although the
3-hydroxyl group of the sphingosine plays a
crucial role in the sphingolipid-mediated
fusion of Semliki Forest virus (16), we could
not determine whether the 3- and 4-hy-
droxyl groups were important for the TCR
contact sites or for the stabilization of gly-

Fig. 1. Proliferative re- A

sponses of V,14 NKT 10-
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colipid conformation.

CD1d is essential for this ligand presen-
tation and recognition by the invariant
V_14 TCR, because proliferative responses
of V 14 NKT cells were abrogated by
monoclonal antibody (mAb) against CD1d,
Vg8, B7, CTLA-4, CD28, CD40, or CD40L
but not against H-2K® or I-A? (Fig. 2, A
and B), indicating that a-GalCer-mediated
stimulation of V 14 NKT cells is CD1d-
restricted and TCR/costimulatory mole-
cule—dependent. NKT cell hybridomas
have been reported to have CD1d autore-
activity (9). This discrepancy may be ex-
plained by the different TCR expression of
hybridomas made by the fusion of thymo-
cytes lacking V14 TCR expression on the
surface (3). [32 -Microglobulin  (8,M)~/~
DCs did not stimulate V 14 NKT cells,
whereas TAP~/~ DCs could (Fig. 2C), sup-
porting nonpeptide ligand presentation by
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Fig. 2. Mode of recognition and ac-
tivation of V14 NKT cells in the in-
duction phase. Cells were prepared
as described in Fig. 1 except for the
materials indicated below. (A)
CD1d-dependent recognition. DCs
(2 x 10% preincubated with anti-
FeyR (50 pwg/ml) (2.4G2) were re-
acted with anti-CD1d (1B1; Pharm-

[3H]TdR uptake (104 cpm) >
[

—@- Anti-CD1d
=0~ Control Ab

Anti-CD1d
Anti-V,8
Anti-B7-1/B7-2
Anti-CD28
Anti-CTLA-4
Anti-CD40
Anti-CD40L
Anti-H-2K®
Anti-l-A>

ingen) or its control antibody (rat im- 0 Control Ab
munoglobulin G,k ). (B) Blocking 5 2 10 s0 0 50 100
of V14 NKT cell activation. Mono- mAbs (ug/ml) % Inhibition
clonal antibodies (50 pg/ml; 015 D
. . P = _._ A
\F/’hgrm’\r/TRgen) against CD1d (1B1), £ _(}]RAG.1 / Neg contr]
8 (MR5-2), B7-1(1G10), B7-2 o -
(PO3.1), CD28 -(8751), CTLA4 & | |TApa Poscontr{ |
(UC10-4F10-11), CD40 (HMA40-3), g~ | A g e Chi—s a-GalCer
CD4OL (MR1), H-2K° (AF6-88.5), & =k, ~o-GalCer}
and I-AP (AF6-120.1), or control & 5 a-GalCer=Chi{ _ H
mAD, were used. The data were ex- & CMA-a-GaICer-II
pressed as percent inhibition of the '%- ) ]
experimental counts per minuteover o a-GalCer—~ CMA :h
the control counts per minute 0 125 5 20 0 5 10 15

(81,336 = 4050 counts per minute).
(C) Requirement of MHC class |-like

DC (103 cells)

[PHITdR uptake (104 cpm)

molecules but not TAP for stimulation of V14 NKT cells. a-GalCer—pulsed (closed symbols) or vehicle-
pulsed (open symbols) DCs prepared from B,M~"~, TAP~/~, or RAG ™/~ mice were used (30). (D) Effects
of Chl or CMA on a-GalCer presentation by DCs. Chl (100 wM; Sigma) or CMA (10 nM; Wako Pure
Chemical Industries) was added to the culture of DCs (2 X 10%) 1 hour before (Chl or CMA—«-GalCer) or
2 hours after (a-GalCer— Chl or CMA) the beginning of the 4-hour pulse with a-GalCer. a-GalCer- or
vehicle-pulsed DCs without treatment were used as positive (Pos contr) or negative (Neg contr) controls,
respectively. The results are expressed as mean counts per minute of three cultures = SD.

class Ib molecule. On the basis of an anal-
ogy with lipoglycan presentation (12), it is
conceivable that chloroquine (Chl) or con-
canamycin A (CMA), which prevents acid-
ification or transportation to late endo-
somes (17), could inhibit a-GalCer presen-
tation by DCs. Treatment of DCs with
these drugs before pulse with a-GalCer in-
hibited proliferation of V_14 NKT cells,
whereas treatment after pulse with a-Gal-
Cer failed. This finding suggests a require-
ment for endosomal function in a-GalCer
presentation (Fig. 2D).

The structural and functional relation
between the lengths of fatty acyl chain
and sphingosine base and activity of a-
GalCer was examined (Fig. 3, A and B).
The most effective lengths of fatty acyl
chain and sphingosine base were C,¢ and
C,g respectively, whereas the short fatty
acyl or short sphingosine base lost their
activity, indicating the hydrophobic inter-
action of a-GalCer with CD1d. The a-
GalCer with fatty acyl (C,4) and sphin-
gosine base (Cyg) is estimated to be about
34 A long, with the fatty acyl chain, the
sphingosine base, and the sugar moiety
being 28, 17, and 8 A long, respectively
(18). Recent studies on the crystal struc-
ture of CD1d molecule indicate that the
binding groove has two large hydrophobic
pockets about 30 A long and 10 to 15 A
wide (19). Therefore, the findings indi-
cate that the a-GalCer with fatty acyl
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(C,4) and sphingosine base (C,4) may be
suitable for binding to these two pockets
of CD1d, possibly through hydrophobic
interactions.

To investigate the selectivity of V 14
NKT cell activation with a-GalCer, we
cultured spleen cells with a-GalCer from
wild-type littermates and V14 NKT-defi-
cient, V_ 14 NKT, and NK-only mice
whose FACS (fluorescent-activated cell
sorting) profiles are shown in Fig. 4A
(top). Proliferative responses were ob-
served in V_ 14 NKT and wild-type mice,
but not in the mice without V_14 NKT
cells (NK-only mice or V_14 NKT-defi-
cient mice) (Fig. 4A). In addition, V14
NKT mice produced large amounts of in-
terleukin-4 (IL-4) and interferon vy (Fig.
4B) and also killed the YAC-1 cells upon
stimulation with a-GalCer, whereas V14
NKT-deficient or NK-only mice did not
(Fig. 4C). Thus, a-GalCer selectively ac-
tivates V14 NKT cells in vivo but not
other lymphocytes. Val4 NKT cells di-
rectly kill target tumor cells by an NK-like
mechanisms and inhibit tumor growth and
metastasis in vivo after activation with
a-GalCer (20) or IL-12 (8), confirming
the previous data on the protection of
tumor metastasis by the treatment of tu-
mor-bearing mice with a-GalCer (21).

Monogalactosylceramide is the smallest
size glycosphingolipid, but B-GalCer has
been detected mainly in mammals (22).
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Fig. 3. Effects of lengths of fatty acyl chain and
sphingosine base of a-GalCer on activation of
Va14 NKT cells. a-GalCers with different lengths
of fatty acyl chains as indicated by X (A) and those
of sphingosine base as indicated by Y (B) were
used. The results are expressed as mean counts
per minute of three cultures = SD.

Most mammalian normal tissues have cer-
amides composed of sphingosine with the
4,5-trans carbon-carbon double bond in
the sphingosine backbone, whereas a-Gal-
Cer has phytosphingosine without this
carbon double bond (23). Although a-
GalCer has been isolated from marine
sponges and has been hardly detected in
normal mammalian tissues (24), a form of
a-anomeric monoglycolipid or glycolipid
with phytosphingosine has been detected
in certain bacteria (25) and in some con-
ditions of mammalian tissues, such as fetus
(26), cancer cells (27), kidney or intestine
(28), or in some cultured cells (29). An
a-glycosylceramide or a natural ligand
similar to this glycolipid may thus exist in
restricted mammalian tissues or be ex-
pressed on cells after activation or during
malignancy.
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