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Analysis of a large sample of well-dated fossil mammals from localities in the Turkana 
Basin of Kenya and Ethiopia revealed sampling biases that affect patterns of faunal 
turnover during the late Pliocene. When these biases were accounted for, results indi- 
cated that 58 to 77 percent of the mammal species were replaced between 3.0 and 1.8 
million years ago (Ma). Overall diversity increased from 3.0 to 2.0 Ma but then declined. 
No distinct turnover pulse is seen between 2.8 and 2.5 Ma; instead, the most significant 
period of faunal change began after 2.5 Ma and continued through 1.8 Ma. 

A major biotic turnover event for African 
land mammals has been proposed for the 
time interval from 2.8 to 2.5 Ma and linked 
to a global change toward cooler, drier, and 
more variable climates associated with the 
onset of Northern Hemisphere glaciation 
( 1-6). The late Pliocene radiation of hom- 
inid species and the emergence of the genus 
Homo have also been attributed to global 
climate forcing (2, 4, 5 ,  7). The African 
turnover event can be viewed as part of a 
broader "turnover pulse" hypothesis, in 
which climate change results in brief peri- 
ods of significant evolutionary change (1-4, 
8). In this article, we provide evidence that 
faunal turnover between 2.5 and 1.8 Ma 
was a prolonged rather than pulsed response 
to late Pliocene climate change in East 
Africa. 

Central issues in de~nonstrating climate 
u 

forcing in the geological record are (i) 
whether observed changes in faunas or flo- - 
ras can be linked to climate change and (ii) 
whether information from the oreserved or- 
ganisms is sufficient to allow biological sig- 
nals coincident with climate change to be - 
distinguished from sampling biases. Previ- 
ous studies of late Pliocene faunal change in 

u 

Africa have focused on individual groups 
such as bovids (1-4), suids (9, 1 O), equids 
(1 1 ), cercopithecids (1 2) ,  and hominids (4, 
9) or provided multilineage overviews ( 13, 
14) with biostratigraphic range data of vary- 
ing quality and resolution for the continent 
as a whole. Here, we use the published 
records of all mammal groups from one 
African late Pliocene basin to separate sam- 
pling biases from original biological signals 
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and to examine evolutionary patterns in 
relation to climate change. 

The Turkana Basin fauna. We focused 
our study on the Turkana Basin because the 
Pliocene-Pleistocene strata there are well 
dated and highly fossiliferous and the tim- 
ing of faunal change elsewhere in Africa has 
been correlated to these strata (4, 14-1 7). 
We  compiled and analyzed a data set con- 
sisting of 425 referenced fossil localities 
from three regions in the northern Turkana 
Basin from 4.4 to 0 Ma. This data set pro- 
vides 3574 records of fossil mammal occur- 
rences based on over 10,000 specimens (Fig. 
1 and Table I ) ,  representing 246 named 
taxa (18). 

The three regions in the Turkana Basin 
are the Omo Valley, Ethiopia (Shungura 
Formation); East Turkana, Kenya (Koobi 
Fora Formation); and West Turkana, Kenya 
(Nachukui Formation) (Fig. 1 and Table 1) .  
The geochronology of these deposits is pri- 
marily based on radiometric dates on volca- 
nic strata that mark the boundaries between 
stratigraphic members or submembers. The 
conservative estimate of maximum and 
minimum ages for fossil localities is the 
same as for the stratigraphic member or 
submember in which they occur, and these 
dates provide the first appearance datums 

Fig. 1. Map showing the Turkana Basin and the 
locations of the three major fossil producing for- 
mations spanning the late Pliocene (3.0 to 1.8 
Ma), A, Omo Valley; B, West Turkana; and C, East 
Turkana. The paleo-Omo River was a major agent 
of deposition in all three areas during much of this 
interval (16, 17, 41). 

(FADS) and last appearance datums 
(LADS) used in this article (19). The only 
exception is the fossiliferous portion of the 
upper Burgi Member of East Turkana, 
which lies unconfor~nably above a major 
erosion surface and thus is likely to be sig- 
nificantly younger than the Lokalalei Tuff 
(dated at 2.52 Ma) at the boundary between 
the upper and lower Burgi members (15). 
The upper Burgi fauna is generally accepted 
as close to, if not slightly younger than, 2.0 
Ma (20), and we use a maximum date of 2.0 
Ma for this fauna. 

In our analysis, it was necessary to decide 
how to use published identifications (21- 
27) of the mammal taxa to create range 
charts that could be analyzed for sampling 
biases. Most of the named taxa provide 
adequate range information at the species 
level, but for some we used the generic 
level. For example, the range for Potomo- 

Table 1. Summary results for the northern Turkana Basln data set, wh~ch consists of 3574 mammal 
records from localities dated between 4.4 and 0.0 Ma. This data set includes faunal data from all 
localities that can be assigned to stratigraphic members on the basis of published information for this 
time interval. The number of specimens (NISP) includes a minimum estimate of 1 for local~ty records that 
othewise included no data on number of specimens. 

Reg~on Total number Percentage Total Percentage 
of localities in basin NISP in basin 

Omo Valley, Eth~opia 254 60 5,218 52 
East Turkana, Kenya 120 28 3,731 37 
West Turkana, Kenya 5 1 12 1,173 12 
Total 425 10,092 
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c h o m  sp. combines P. p c u s  (three local- 
ities at East Turkana, dated from 4.35 to 
2.68 Ma) and Potomochoerus sp. (two local- 
ities at West Turkana, dated from 3.36 to 
1.6 Ma). This approach thus combines 
some taxa that might be recognized as dis- 
tinct but results in better documented rang- 
es that permit more comprehensive analysis 
of sampling biases. 

To establish outside limits on the num- 
ber of appearances and extinctions in the 
Turkana Basin record, we adopted an ap- 
proach that provided "maximized" and 
"minimized" estimates of turnover (28) 
based on criteria for deciding which taxa to 
retain, combine, or eliminate from the anal- 
ysis. The maximizing approach yielded 144 

taxa, and the minimizing approach reduced 
the sample to 74 taxa. Stratigraphic ranges 
were plotted for both data sets, and the 
number of FADs, LADS, and total species 
were counted for specified intervals (29). 

Sampling variability can have serious ef- 
fects on inferred patterns of faunal turnover 
(4,8,9,30,31). We looked for times when 
the number of FADS and LADs was not 
correlated with this variabilitv as evidence 
for actual biological turnover or lack of 
turnover. For the Turkana Basin sequence, 
the number of localities per time unit (re- 
ferred to subsequently as "fossil abun- 
dance") can be used as a measure of sam- 
pling variability (32). When the different 
regions of the Turkana Basin are examined 

East Turkana, Kmbl Fora Fannmtlon 

separately, this measure of sampling is cor- 
related significantly with faunal turnover 
(Fig. 2). Changes from low to high fossil 
abundance coincide with FAD peaks in the 
Lokochot and upper Burgi members (about 
3.4 and 2.0 Ma) in the East Turkana record, 
in the Lomekwi and Kalachoro members 
(about 3.0 and 2.1 Ma) in the West Tur- 
kana record, and in Members B and E-F 
(about 3.1 and 2.4 Ma) in the Omo record. 
Likewise, high followed by low fossil abun- 
dance coincides with LAD peaks in the 
Tulu Bor and Okote members (about 3.0 
and 1.5 Ma) at East Turkana and in Mem- 
ber G (about 2.1 Ma) at Omo. Because of 
these correlations, we cannot rule out that 
sampling variability, rather than a biologi- 

A Omo Valley, Shungura formaHon 

4.0 3.0 2.0 1 .O 0.0 

West Turkana, Nachukui Formation 

4.0 3.0 2.0 1 .O 0.0 
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Fig. 2. (A to C) Sampling variability measured by number of localities, total 
number of species, and species turnover (FADs and LADS), for each of the 
three regions of the northern Turkana Basin (46). (A) East Turkana, Kmbi 
Fora Formation; (B) West Turkana, Nachukui Formation; (C) Omo Valley, 
Shungura Formation. Members for each formation are listed across the top, 
and long-dashed lines show the radiometrically dated boundaries between 
each member (75); the late Pliocene (3.0 to 1.8 Ma) interval is shaded. 
Short-dashed line in (A) indicates the gap in the fossil record of the Burgi 
Member (20). Overall, sampling variability is significantly conelated (>95% 
confidence level) with FADs plus LADS at East Turkana (Pearson's r = 0.891. 
d f  = 8), West Turkana (r = 0.769, d f  = 6). and the Omo (Pearson's r = 0.636, 

4.0 3.0 2.0 1 .O 0.0 d f  = 9); exceptions to this pattem in particular time intervals indicate actual 

Age (Ma) biological signals. 
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cally mediated increase or decrease in spe- 
cies, is responsible for the turnover peaks. 
However, in the Omo record, the number 
of FADS per member is relatively constant 
from 3.0 to 2.0 Ma (with the exception of 
Member D) in mite of the wide fluctuations - L 

in the sample sizes, indicating a consistent 
level of faunal turnover throuehout this 
interval. In the East Turkana record, the 
overall increase in number of species could 
result primarily from increased fossil abun- 
dance up to about 2.0 Ma, but between 2.0 
and about 1.8 Ma, continued high ~roduc- 
tivity in the KBS Member accompanied by 
decreased FADS and increased LADS indi- 
cates a period of real faunal turnover. This 
turnover is also evident between about 2.1 
and 1.8 Ma at West Turkana. 

When the data for each region were 
combined in 200,000-year intervals, the ef- 
fects of uneven sampling were reduced but 
not eliminated (Figs. 3 and 4). For the 
interval between 3.3 and 1.5 Ma, which is 
relatively well sampled with >15 localities 
per 200,000-year interval, there is no over- 
all correlation between fossil abundance 
and total FADs plus LADs for either the 
maximizing or minimizing approach (Fig. 
4), indicating that the turnover pattern rep- 
resents a biological signal rather than sam- 
pling variability. However, the marked in- 
crease in fossil abundance between 2.5 and 
2.1 Ma, which reflects increased numbers of 

localities from Omo Members E through G, 
corresponds to the peaks in FADs and 
LADs between 2.4 and 2.2 Ma (Figs. 2C 
and 4), and it is not possible to resolve a 
finer scale pattern of biological turnover 
because of this sampling effect. 

Patterns of fauna change. Vrba (4, 8) 
has s~ecified criteria for testine the turn- 
over pulse hypothesis that can G applied to 
the African fauna, including (i) significant 
and synchronous increases in the number of 
FADs and LADS of species, with the exis- 
tence of a turnover pulse determined by a 
statistically significant change in the tum- 
over rate during a specified, relatively short 
time interval between 2.8 and 2.5 Ma; (ii) 
concurrent increase in turnover rate across 
different taxonomic groups; (iii) differential 
timing of turnover depending on ecological 
tolerances of the group(s); and (iv) corre- 
spondence in time with independently doc- 
umented environmental change, that is, the 
onset of Northern Hemisphere glaciation. 

The Turkana Basin data show that al- 
though significant species turnover oc- 
curred during the 3.0- to 1.8-Ma interval, 
there is no marked pulse affecting different 
taxonomic groups between 2.8 and 2.5 Ma. 
The highest turnover [represented here as 
(FADs + LADSltotal number of species) X 
100 (%)I for any 200,000-year interval be- 
tween 3.0 and 1.8 Ma is 24 to 32% for the 
interval from 2.4 to 2.2 Ma (the range is for 

the minimizing versus maximizing ap- 
proaches, respectively) and 19 to 28% for 
the interval from 2.0 to 1.8 Ma. The change 
in turnover is significant between 2.5 and 
2.1 Ma but not between 2.9 and 2.5 Ma 
(Fig. 5). The peak in turnover between 2.4 
and 2.2 Ma is about 15% above that of the 
previous interval (based on the increase 
relative to the total number of species in 
each interval for both approaches) (Fig. 5). 
However, because of the sharp increase in 
fossil abundance (Fig. 4), species appear- 
ances that may have occurred before 2.2 
and 2.4 Ma were concentrated in this in- 
terval, and it is not possible to distinguish 
the pattern of faunal change from this sam- 
pling bias for the interval from 2.5 to 2.1 
Ma. This sampling effect may also extend 
before 2.5 Ma and include species that ac- 
tually appeared between 2.8 and 2.5 Ma (4),  
but the pattern of relative faunal stability in 
the well-sampled Omo fauna (Fig. 2C) as 
well in the combined data (Fig. 4) indicates 
no major turnover event between 3.0 and 
2.5 Ma. Between about 2.1 and 1.7 Ma, 
during a period of continuing high fossil 
productivity, the pattern of FADs and 
LADs provides evidence for accelerated 
faunal turnover. The duration of this period 
of increased turnover is uncertain because 
of the sharp drop-off in fossil abundance 
after 1.7 Ma. 

From 3.0 to 2.0 Ma, total species turn- 

Fig. 3. Species range 
chart for the northem 
Turkana Basin fauna, 
based on the minimizing 
approach (see text) (28, 
47) and organized alpha- 
betiity by order and 
then by family and genus. 
The late Pliocene time 
interval (3.0 to 1.8 Ma) is 
shaded. Numbers after 
the species names are 
the total number of lo- 
calities at which the 
species was recorded. 
Tabular data for both 
the minimizing and 
maximizing approaches 
are available at eteweb. 
Iscf.uscb.edu and www. 
sciencemag.o@eature/ 
data/973775.shl 
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over was between 41 and 59% (minimizing 
and maximizing approaches, respectively) 
(Fig. 4 and Table 2). This rate is similar to 
the estimate of about 42%/Ma for North 
American Pliocene-Pleistocene mammals 
(3 1 ). First appearances represent 82% of the 
total turnover in the minimizing approach, 
and total diversity increases by about 35%, 
from 48 species before 3.0 Ma to 65 species 
at 2.0 Ma. This increase represents the ad- 
dition of 23 species in seven different fam- 
ilies and the loss of 5 species in four families 
(Table 2). Most of this change appears to 
have occurred from 2.5 to 2.0 Ma. At the 
end of the Pliocene, between 2.0 and 1.8 
Ma, the rate of turnover per 200,000-year 
interval increased, and disappearances out- 
numbered appearances. Thus, overall, 
FADS increased between 2.5 and 2.0 Ma, 
leading to higher species diversity, followed 
by a period of turnover with low FADs and 
increased LADS resulting in a diversity de- 
cline by 1.8 Ma. 

Vrba (4) has suggested that responses to 
environmental change toward cooler and 
drier climatic conditions from 2.8 to 2.5 Ma 
promoted more open habitats in tropical 
Africa and led to a turnover pulse repre- 

sented in the records of the Bovidae, Ro- 
dentia, and Hominidae. A number of bovid 
species (8 out of a total of 25 in the mini- 
mizing approach and 17 out of 46 in the 
maximizing approach) appeared between 3 
and 2 Ma in the Turkana Basin, but these 
appearances were not clustered between 2.8 
and 2.5 Ma (Fig. 3). The bovid tribes An- 
tilopini and Alcelaphini are generally re- 
garded as indicative of open habitats, and 
their increase has been used as an index of 
vegetational change toward grasslands (1, 
2). The maximizing approach includes 15 
species in these two tribes; 7 have FADS 
between 3 and 2 Ma, and 5 of these appear 
between 2.5 and 2.0 Ma. The minimizing 
approach includes nine species in these 
groups, with three FADS, all between 2.5 and 
2.0 Ma (Fig. 3). The presence of dry or open 
(or both) habitats is indicated by a number 
of species that originated before 3 Ma and 
survived through 2 Ma, such as the anti- 
lopines GazeUa praehmmni and G. janen- 
xhi, as well as the alcelaphine genera Con- 
&tes and Damaliscus (1.33). The range 
data for these two bovid tribes indicate that 
open or dry (or both) habitats provided o p  
portunities for new species throughout the 

interval from 3 to 2 Ma and support the 
hypothesis that ecological change was pro- 
longed in the Turkana Basin. 

The persistence of woodland to forest 
s~ecies from 3 to 2 Ma ~rovides further 
evidence of stability in some parts of the 
ecosystem. Primate species requiring arbo- 
real substrates in woodlands or forests, such 
as Paracobbus mutiwa and Rhinocobbus tur- 
kaMensis (34), were present from about 3.4 
to 1.9 Ma. The extinct baboon Thopithe- 
cus was abundant in the basin, and T h o -  
pithecus brumpti, which was associated with 
woodland habitats, appeared at 3.4 and dis- 
appeared at about 2.0 Ma (35). Tragelaphus 
snepsiceros (greater kudu), which today pre- 
fers woodland and bush habitats, appeared 
between 2.5 and 2.3 Ma and was present at 
many localities in all three regions. 

In the northern Turkana Basin, the 

Table 2 Summary of late Pliocene faunal turnover in the northem Tulkana Basin, showing overall 
tumover rates and species diversity for the maximizing and minimizing appm&es and breakdown of 
species turnover and continuity in the fossil record of different mammal groups for the time interval +A* 

between 3 and 2 Ma (Fig. 3) (18, 19,28,29,36). Z40 . .A. 

3.0 to 2.0 Ma 
Species Species Species ,- 

Total number Percentage diversity diversity diversity 
FAD LAD of turnover at 3.0 Ma at 2.0 Ma at 1.8 Ma .g :t 

Of FAD + LAD 
B 

Maximizing 50 28 132 59 82 104 86 
Minimizing 23 6 71 41 48 65 56 

40 

Maximizing Minimizing 

Total number FAD LAD Total number 4.0 3.0 2 o 1.0 0.0 
FAD LAD of species of species Age (Ma) 

Artiodactyla 
Bovidae 
Camelidae 
Giraffidae 
Hippopotamidae 
Suidae 

Carnivora 
Chiroptera 
Hyracoidea 
lnsectiiora 
Lagomorpha 
Perissodactyla 

Chalicotheriidae 
Equidae 
Rhinocerotidae 

Primates 
Cercopithecidae 
Hominidae 
Lorisidae 

Proboscidea 
Rcdentia 

Fig. 4. Number of localities representing fossil 
abundance (A) and the resutts of the minimizing 
and maximizing approaches (B and C), showing 
the turnover pattern through time and total num- 
bers of species, combined for all three regions 
(46,48). FAD or LAD records that fall precisely on 
the time lines in Fig. 3 are counted in the older 
interval to derive the totals plotted here. The cor- 
relation between fossil abundance and turnover 
between 3.3 and 1.5 Ma is not signiticant at the 
95% confidence level [Pearson's r = 0.271 (max- 
imizing) and r = 0.355 (minimizing), 9 df in both 
cases]. The sharp peak in (A) between 2.5 and 2.1 
Ma primani reflects an increase in fossil abun- 
dance in Members E to G in the Omo (Fig. 2C), 
which is centered at 2.3 Ma in this figure as a result 
of the method for distributing localities in 200,000- 
year intervals (48). Totals for FADs, LADS, and 
continuing taxa for each interval were counted 
directly from the maximizing and minimizing range 
charts. 
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record for rodents and lagomorphs is docu- 
mented by 362 published specimens at only 
18 localities, 13 of which are in the Omo 
deposits (27). Some species that indicate 
drier habitats, such as Jaculus orientalis (jer- 
boa), Heterocephnlus atikoi (naked mole rat), 
and Lepus capensis (Cape hare), appeared at 
about 2.5 Ma, but sampling of microfauna 
before that time is sparse (seven localities in 
the whole northern basin, onlv two of which 
have multiple taxa). As 'with the Bovidae, 
taxa affiliated with oDen or drier habitats 
were present before 3 Ma and persisted 
through 2 Ma [such as Tatera inclusa (large 
naked-soled gerbil) and Xerus erythropus 
(African ground squirrel)], but closed habi- 
tat to mesic savanna species [such as Croci- 
dura cf. dolichura (white-toothed shrew) and 
Thryonomys gregorianus (cane rat)] also con- 
tinued through this interval. In general, 
however. the microfaunal record is too in- 
complete to provide adequate. evidence for 
turnover Datterns in the late Pliocene. 

Six hominid taxa were represented in 
the region from 3 to 2 Ma: Australopithecus 
(Paranthropus) boisei, A .  cf, boisei [including 
A. ( P . )  aethiopicus], a "nonrobust" Australo- 
pithecus species less megadont than A. boi- 
sei, Homo habilis, H .  cf. habilis (including H .  
rudolfensis), and Homo sp. (36). We  counted 
all six in the maximizing approach, and, in 
the minimizing approach, we combined A. 
cf. boisei with A. boisei and H .  cf. habilis with 
H .  habilis, for a total of four taxa. Five of the 
six (maximizing.) or three of the four (min- - 
imizing) taxa first appeared during the 3- to 
2-Ma interval, with FADs for H .  habilis and 

Fig. 5. Plot of percentage of turnover (FADs plus 
LADs divided by the total number of species for 
each interval) for the late Pliocene of the Turkana 
Basin for the minimizing (solid line) and maximizing 
(dashed line) approaches. x2 values for each pair 
of points are shown below the turnover plots, with 
the relative significance of changes in turnover 
indicated by the horizontal dashed lines. The 
marked peak between 2.5 and 2.1 Ma is at least 
parily a result of increased fossil abundance (Fig. 
4), but, between 2.1 and 1.7 Ma, the pattern rep- 
resents faunal turnover during a period of continu- 
ing high fossil abundance. 

Homo sp. between 2.4 and 2.2 Ma (Fig. 3). 
Because of the region's ecological diversity, 
the first appearances of Homo and robust 
australopithecines do not necessarily imply 
that these hominids preferred open habi- 
tats. Global (37) and regional (38, 39) cli- 
mate records indicate that the period be- 
tween 3 and 2 Ma was cooler and drier but 
was also characterized by wide environmen- 
tal fluctuations. O n  the basis of the temDo- 
ral correlation alone, it is not possible to 
determine whether turnover and adaotive 
change in hominids were a response to the 
overall environmental change or to the 
long series of high-amplitude habitat varia- 
tions in the vegetational mosaic (40). 

The different records of faunal turnover 
in the three regions of the Turkana Basin 
(Fig. 2)  thus result from a mix of sampling 
effects and actual biological stasis and 
change. Combined records for the three 
parts of the basin (Figs. 4 and 5)  reflect 
faunal change as well as the persistence of 
species representing a spectrum of open to 
closed habitats. We  propose that a fluctu- 
ating but overall expansion of open habitats 
combined with the oersistence of woodland 
and forest initially provided increased op- 
portunities for mammals and led to a rise in 
diversity from 3.0 to 2.0 Ma, followed by a 
diversitv decline as oDen habitats became 
more ddminant at theLend of the Pliocene. 
This two-part interval of turnover lasted 
about 0.7 million years. 

Feibel et al. (41) have attributed the 
apparent absence of a turnover pulse 
around 2.5 Ma in the Turkana Basin to 
the effect of permanent water supplied by 
the ancestral Omo River, implying that 
riverine and lacustrine environments in 
the basin were buffered from continental- 
scale changes by regional conditions. Be- 
tween 3 and 2 Ma, there were shifts in 
abundance within some groups of mam- 
mals within the Omo sequence (42), sug- 
gesting that habitat changes affected local 
populations but were not  severe enough to 
cause their extinction. The basin included 
a range of habitats from forest to bushland 
and grassland, some of which were consid- 
erably drier than areas proximal to the 
paleo-Omo River (38, 41) ,  but species 
representing the drier habitats do not  pro- 
vide evidence for a short-term turnover 
event. Thus, although a pulse of species 
turnover may have occurred elsewhere on 
the continent between 2.8 and 2.5 Ma, 
the absence of evidence for such a oulse 
from the best calibrated, fossil-rich depos- 
its for this time oeriod weakens the case 
for rapid climatic forcing of continent- 
scale ecological change and faunal turn- 
over. Instead, our data indicate that late 
Pliocene evolution in East Africa was af- 
fected by the cumulative ecological con- 

sequences of cooler, drier, and more vari- 
able climatic conditions rather than bv a 
sudden change toward open habitats. 
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