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CD4-Independent Binding of SIV gp120 to 
Rhesus CCR5 

Kathleen A. Martin, Richard Wyatt, Michael Farzan, 
Hyeryun Choe, Luisa Marcon, Elizabeth Desjardins, 
James Robinson, Joseph Sodroski," Craig Gerard," 

Norma P. Gerard* 

CCR5 and CD4 are coreceptors for ~mmunodeficiency virus entry into target cells. The 
gp120 envelope glycoprotein from human immunodeficiency virus strain HIV-l(YU2) 
bound human CCR5 (CCR5,") or rhesus macaque CCR5 (CCR5,,) only in the presence 
of CD4. The gpl20 from simian immunodeficiency virus strain SIVmac239 bound CCR5,, 
without CD4, but CCR5,, remained CD4-dependent. The CD4-independent binding of 
SIVmac239 gp120 depended on a single amino acid, Aspi3, in the CCR5,, amino- 
terminus. Thus, CCR5-binding moieties on the immunodeficiency virus envelope gly- 
coprotein can be generated by interaction with CD4 or by direct interaction with the CCR5 
amino-terminus. These results may have implications for the evolution of receptor use 
among lentiviruses as well as utility in the development of effective intervention. 

H I V - 1  entry is medlated bv the viral en- target cell coreceDtor of the seve11-trans- 
velope glycoprotein complex consisting of membrane-spanning G protei11-coupled re- 
the exterior glycoprotein, gp120, and the ceptor family (3-5). Formation of this corn- 
transmembrane glycoprotein, gp41 ( 1  ). plex is believed to induce a conformational 
CD4 acts as the primary target cell receptor, change exposing the gp41 ectodomain, 
binding to the gp120 glycoprotein (2 ) .  The which mediates fusion of the viral and tar- 
gp120-CD4 complex requires an additional get cell membranes (6) .  
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Binding of CD4 to HIV-1 gp120 exposes 
structural epitopes detectable with monoclo- 
nal antibodies (mAhs) (7). These epitopes 
include conserved and variable structures on 
gp120 that are implicated in binding to the 
coreceptor (4,  5)  and suggest a stepwise 
mechanism by which macrophage-tropic 
strains of HIV-1 achieve fusion and entry 
into host cells. Seq~~ential binding of CD4 
followed by coreceptor may enable the virus 
to shield its fusion-sensitive epitopes from 
the immune systetn until contact with the 
target cell surface. 

CCR5 cloned from rhesus macaques 
(CCRjrh) is highly similar to human CCR5 
(CCRSh,,) (98.3% sequence identity), with 
only eight amino acid changes (8). Five are 
conservative suhstitutions in transmem- 
brane domains; the others are a Lys'" + 
Arg substitution in the second extracellular 
loop and two nonconservative substitr~tions 
in the NH,-terminus (rhesus + human 
Thr' + Ile, Asp13 + Asn) (8). These 
substitutions do not restrict viral entry, as 
primary isolates of SIV and HIV efficiently 
infect CD4+ cells expressing rhesus or hu- 
man CCR5 (8,  9). Rhesus and human 
CCR5 also support entry by interaction 
with a wlde spectrutn of SIV (macrophage- 
and T cell-tropic) and HIV (macrophage- 
tropic) envelope glycoproteins expressed on 
reco~nhina~nt virions (8, 9). The natural 
ligands for CCR5, the P chemokines MIP- 
l a ,  MIP-l(3, and RANTES, inhihit infec- 
tion by HIV-1, HIV-2, and SIV (10). Here, 
we examined the interactions of HIV-1 and 
SIV envelope glycoproteins with rhesus and 
human CCR5. 

The system used involved intact HEK293 
cells transiently transfected with expression 
plasmids for CCRSrll or CCRS1,, (1  1 ). "'I- 
labeled MIP-1(3 bound CCRjl,,, (12)  and 
CCR5,, with dissociation constants (KLi) of 
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0.4 and 1.2 nM, respectively, comparable to 
the y, of 0.85 nM observed for endogenous 
receptors on human primary macrophage 
cultures (13). "'I-labeled MIP-la bound 
with slightly lower affinity to either receptor 
(KLl = 3.5 nM, CCR5r,,; KLI = 6.4 nM, 
CCR51,u). Thus, the transfected cell system 
provides an adequate model of the native 
confortnation of these receptors. 

HIV-1 (YU2) is a primary ~nacrophage- 
tropic isolate that uses CCR5 as a corecep- 
tor (4) .  Recombinant YU2 gp120 en~relope 
glycoprotein bound CCR5rl, in transfected 
HEK293 cells with a K', of 5.2 nM in the 
presence of 100 nM soluble CD4 (sCD4) 
(14). In the ahsence of sCD4, specific hind- 
ing was not observed (Fig. 1). YU2 gp120 
competed with '"I-labeled MIP-1P for 
binding to rhesus or human CCR5 in the 
presence of sCD4 (4,  13). Thus, YU2 gp120 
binds to CCR5,, with an affinity nearly 
identical to that observed for CCR51,L,. As 
for CCR51,,, (4 ,  5) ,  CD4 is required for 
efficient interaction of YU2 gp120 with 
CCRS,,. 

Rhesus and hutnan CCR5 efficiently 
support entry of SIVmac239 (8,  9) and 
other SIV strains (8) in CD4-expressing 
cells. Direct interactions among SIVlnac 
envelope glycoproteins, CD4, and CCR5 
have not been demonstrated. In the pres- 
ence of 100 nM sCD4, SIVtnac239 gp120 
competed with "'I-labeled SIVmac239 
gp120 (Fig. 2A) or '"I-laheled MIP-la 
(Fig. 2B) for binding to CCRjrh ,  with a KLi 
of 8.19 + 1.06 IIM (n  =. 11) (14). Binding 
was dependent on the presence of the V3 
loop, as a SIVmac239 1V3  gp120 mutant 
lacking this region failed to compete with 
"'I-labeled SIVmac239 gp120 or '"I- 
labeled MIP-la at 1000-fold molar excess 
(Fig. 2B). In contrast to CD4-dependent 
hinding of macrophage-tropic HIV-1 glyco- 
proteins, SIVmac239 gp120 bound CCR5,  
without sCD4, with a KL, of 14.36 + 3.90 
nM (n = 11) (Fig. 2A). The difference in 
affinities with or without sCD4 was not 
statistically significant (P = 0.12); howev- 
er, in the presence of sCD4, 20 to 40% 
more gp120 was bound. SIVmac239 gp120 
also bound CCRjhu in HEK293 cells in the 
presence of sCD4, with a Kd of 2.7 IIM (Fig. 
3C). However, binding to CCR5,,,, was 
CD4-dependent (Fig. 2C). 

Amino acid sequences in several distinct 
regions of CCR5 have been shown to be 
essential for coreceptor function (1 5 ,  16). 
Using alanine scanning tnutagenesis of 
CCR51,u, we recently identified a region that 
included the tyrosine-rich motif Tyrl"Asp- 
Ile-Asn-Tyr-Tyr (17). In CCR5,1, this se- 
quence is Tyrl'-Asp-Ile-Asp-TY-Tyr, and 
we hypothesized that this substitution may 
correlate with the CD4 independence of 
SIVmac239 hillding to CCRjrll. 

Fig. 1. HIV l (YU2) gp120 blndlng to rhesus 
CCR5 In transiently transfected HEK293 cells 
Cells (106) expressing CCR5,, were Incubated 
wlth 1 0 nM ""l-abeled YU2 gp120 In the pres 
ence (H) or absence (0) of 100 nM sCD4 and the 
ndlcated concentrations of unlabeled YU2 
gp120 Samples were processed as described 
(12) Data are expressed as mean cpm z SEM 
Data are representatve of SIX experments 

To examine this possibility, we mutated 
CCRjlh  from Asp13 to Asn13 as it occurs in 
CCRS1,, ( 1  8). In transfected HEK293 cells, 
CCR5,1,n13h- hound SIVmac239 gp120 only 
in the presence of sCD4 (Kd = 11.6 nM) 
(Fig. 2D), which suggested that the single 
charge difference at residue 13 in the NH,- 
terminus confers CD4-~ndependent binding 
to rhesus but not human CCR5. To confirm 
this finding, we made the corresponding 
mutation (AsnI3 + Asp) in CCRS,,, (18). 
CCR5,,uK13n conferred gain of function for 
CD4-independent hinding of SIVmac239 
gp120 (KL, = 7.7 nM with sCD4, Kd = 0.85 
nM without sCD4) (Fig. 2E). HIV-l(YU2) 
gp120 binding was CD4-dependent for both 
mutant receptors (1 9). The other NH2-ter- 
minal mutation hetween CCRj,,, a~nd 
CCRSllu (Thry + Ile) has no role in CD4 
independence, as CCRjrh,,, retained CD4- 
independent binding of SIVmac239 gp120 
(KLj = 11.4 nM with sCD4, Kcl = 4.04 IIM 
without sCD4) (19). 

Vile tested seven mAbs derived from an 
HIV-2-infected human for their ability to 
inhihit SIVmac239 gp120 binding to CCR5,, 
in HEK293 cells in the presence and ahsence 
of sCD4. These rnAbs recognize distinct con- 
formation-dependent epitopes cotnnlon to 
HIV-2 and multiple strains of SIV (20, 21).  
The tnAhs B23, llOC, or 17A, which react 
with SIVmac239 (21),  efficiently inhibited 
CD4-independent binding of SIVmac239 
gp120 (Fig. 3, A and B); mAh 15D, which has 
been reported to react with SIVmac25 1 and 
weakly with SIVmac239 (20), partially inhih- 
ited SIVmac239 gp120 binding (Fig. 3A). 
The mAbs 23F and 34G, which also do not 
react with SIVmac239, failed to inhibit SIV- 
mac239 gp120 binding to CCR5rl,, and rnAO 
26C, a non-neutralizing mAh that reacts with 
SIVmac239, does not block CCR5 binding 
(Fig. 3A). Inhibition of SIVmac239 gp120 
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binding by neutral~zing (but not non-neutral- 
izing) mAbs suggests that these antibodies 
may interfere with the gp120-CCR5 interac- 
tion. Further, antibody Inhibition m the ab- 
sence of CD4 suggests they do not recognize 
CD4-lnduced eoitooes. 

Fig. 2. SVmac239 gp l20  bindlng to rhesus or 
log [SIVI (M) 

human CCR5 and CCR5 mutants In transient- 
ly transfected HEK293 cells. Cells (10") ex- 
pressing (A) CCR5,, (squares). (C) CCR5,, (tri- 
angles), (D) CCR5,,,,,, (circles), or (E) D E 

L L 

The observation that some lentiviruses 
use chemokine receptors but not CD4 for 
entry raises the possibility that primordial 
lentiviruses used seven-transmernbrane- 
spanning proteins as a sole receptor, and 
that the use of CD4 evolved with the pri- 
mate lentiviruses 122). In this view. SIV 

CCR5,,,,,, (damonds) were ncubated with 20,000 - 
1.0 nM '"I-labeled SIVmac239 gp120 and 
the Indicated concentrations of unlabeled 

15,000 - 
SlVmac239 gp120 in the presence (solld 3 
symbols) or absence (open symbols) of 100 
nM sCD4, as described (15). Data are ex- g 10,000 - 
pressed as mean cpm ? SEM. (B) Cells (1 06) .E 

m exprezsing CCR5,, were incubated with 0.1 
nM -labeled MIP- la  and the indicated 

5,000 - 

concentrations of unlabeled SlVmac239 
gp120 in the presence (W) or absence (0) of 0 ,  

, , 

represents a transitional virus between 
CD4-independent lentiviruses and HIV-1, 
for which CD4 use is obligate. This helps to 
explain the propensity of the related virus, 
HIV-2, to evolve vlrus strains that efficient- 
ly infect CD4-negative cells by use of che- 
mokine receptors alone (23).  

Infection by most SIV strains is signifi- 
cantly enhanced by the presence of CD4 on 
the target cells. The discrepancy between 
CD4-independent gp120 binding and CD4 
enhancement of SIV infection may be ex- 
plained by the different context in which 
these two processes occur. Entry is mediated 
by a trilneric gp120-gp41 complex on the 
viral surface (24), whereas the binding as- 
says use gp120 monomers (25). CD4 bind- 
ing tnay serve additional functions for in- 

12,000 - 

A 10,000 

8,000 \ , 6,000 - 
m 

4,000 - 

I 1 I 2,000 I I 

tact virus besides the ~ I I ~ L I C ~ L O I I  of the che- 
lnokine receptor binding site. 

Conformation-dependent, CD4-indepen- 
dent neutralizing mAbs from HIV-2-infect- 
ed individuals efficiently inhibited SIV- 
mac239 binding to CCRj,,, (Fig. 3, A and 
B). Alterations in the SIV gp120 V3 and V4 
regions have been shown to disrupt a COII- 

100 nM sCD4; 100 nM SlVmac239 gp120 -10 -9 -8 -7 -10 -9 -8 -7 
lacking the V3 loop (AV3) was also assayed 
as a competitor In the presence of 100 nM 

log [SIVI (M) 

sCD4 (X). Data are expressed as mean speciflc blndlng (cpm ? SEM), SIVmac239 gp120 1s subtracted from total bindlng. Data are representa- 
where nonspec~fic blnaing in the presence of 200 nM unlabeled tive of nne  (A), two (B, C, and E), or three (D) Independent experiments. 

Fig. 3. HV-2 mAb lnhlbition of 1251-labeled SIV- 
mac239 gp120 bindlng to rhesus CCR5 In tran- 
slently transfected HEK293 c e s .  (A) Cells (10") 
were incubated w~ th  1.0 nM i251-labeled SIV- 
mac239 gp l20  and 100 nM sCD4 alone, with 300 
nM unlabeled SIVmac239 gp120, or with 5 k g  of 
the indicated HIV-2 mAbs [B23, 1 IOC, and 17A 
react with SIVmac239 as well as other SIV strains 
(20, 21); 23F and 34G do not react with SIV- 
mac239; 15D reacts weakly and 26G reacts 
strongly but IS non-neutraizng; CGlO is specific 
for HIV-1 and was included as a negative control]. 
Data are expressed as mean cpm i SEM and are 
representative of three independent experiments. 
(B) Antibody lnhibltlon of '"I-labeled SIVmac239 
gp120 binding to rhesus CCR5 in the presence 
(solid bars) or absence (open bars) of 100 nM 
sCD4. (Competit~on by mAb 26C in the absence 
of CD4 was not tested.) Bndng  conditions are as 
described for (A). Data are means i SEM and are 
representative of three Independent experiments. 

formation-dependent epitope that is the tar- 
get of the most potent anti-SIV neutralizing 
antibodies (26). 

The aspartlc acld residue that deter- 
mines CD4-independent SIVgp120 binding 
resides within a tyrosine-rich motif identi- 
fied by mutagenesis as critical for the inter- 
action of CCR5 with the HIV-1 and SIV 

b, 0 +SIV 823 110C 17A 15D 23F 34G 26C CGlO 
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gp120 glycoproteins ( 1  7, 27). This motif is 
conserved in all chemokine receptors used 
bv ~rimarv HIV-1 and SIV isolates. Our , . 
results suggest that amino acid residues 
within this region directly contact the 
gp120 glycoprotein during CCR5 binding. 
It IS llkely that the Interaction of CCR5 
with a previously cryptic site on gp120 near 
or within the V3 loop triggers subsequent 
conformational changes in the envelope 
glycoprotein, leading to virus-cell mem- 
brane fusion. In HIV-1, CD4 binding is 
required to expose or form the CCR5 bind- 
lng site. In SIV, gp120 moieties, perhaps 
within the V3 loop, can interact with Asp13 
of CCR5r, and initiate high-affinity gp120- 
CCR5 binding in the absence of CD4. The 
identification of this single critical amino 
acid in CCR5 may have utility in the deslgn 
of assay systems for therapeutics and vac- 
cine candidates. 
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