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Immune Response and Myoblasts 
That Express Fas Ligand 

H e n r y  T. Lau e t  al. ( 1 )  report that syn- findings of Lau e t  al. (1). Although shown 
geneic myoblasts that expressed Fas llgand earlier to  occur in  postnatal cardiac and 
(FasL, CD95L) protected allogenelc islets skeletal muscle tissues (9), Fas expression 
of Langerhans from immune rejection had, to  our knowledge, not been examined 
when cotransnlanted under the kidnev in cultured cells. With the use of a n  anti- 
capsule. T h e  presumed immune privilege 
conferred by exogenous expression of FasL 
in this system appeared to be similar to  the 
naturally occurring immune protection 
described in the anterior chamber of the 
eye ( 2 ) ,  in  the rodent testis ( 3 ) ,  and in 
malignant melanoma ( 4 ) ,  all of which ex- 
press endogenous FasL. These studies gen- 
erated considerable interest in  the scien- 
tific community because they suggested a 
method for generating gene- or tissue-spe- 
cific tolerance with broad applications to  
organ transplantation. In contrast with 
these results, others have found that ex- 
ogenous FasL expression, either by tumor 
cells or by islets, targeted the cells for 
rapid destruction by neutrophils ( 5 ,  6). 
Moreover, although a recent report 
showed a FasL-mediated inhibition of an- 
tibody production, it also stated that a n  
inflammatory response was observed (7). 

T o  investigate potential variables lead- 
ing to these divergent findings, we carried 
out experiments designed to replicate 
closely those described by Lau e t  al. (1).  
Primary skeletal myoblasts were isolated 
from C 3 H  mice and transduced with a 
retroviral vector that directs Inurine FasL 
expression from the LTR promoter. Func- 
tional FasL expression was confirmed by 
cytotoxicity to Fas-expressing Jurkat cells 
(8). Unexpectedly, transduced myoblasts 
underwent rapid apoptosis during differen- 
tiation, which suggests that skeletal myo- 
blasts express Fas, in contrast with the 

body to mouse Fas, Jo2 ( l o ) ,  we confirmed 
Fas expression in myoblasts of C 3 H  (Fig. 
1) and C57BL/6 strains (1 1 ) .  

To  avoid FasIFasL-mediated self-destruc- 
tion of myoblasts, we generated primary 
myoblasts from Fas-deficient C57BL/6 lpr 
mice, the mouse counterpart to human au- 
toimmune lymphoproliferative syndrome 
(ALPS). When  transduced with the FasL 
vector, lpr myoblasts did not self-destruct 
on differentlation in vitro. Nontransduced 
or FasL-transduced lpr myoblasts were in- 
jected under the kidney capsule of congenic 
C57BL/6 mice. Mice were killed l , 3 ,  7, 14, 
and 26 days after transplantation, and their 
kidneys were removed for histological ex- 
amination (Fig. 2). Kidneys transplanted 
with nontransduced myoblasts appeared 
normal at all time points (Fig. 2, A, C ,  and 
E). In contrast, each kidney transplanted 
with FasL-expressing myoblasts had a prom- 
inent white abscess that was abundant in 
neutrophils; these abscesses appeared by 
day 1, were pronounced by day 3, and dis- 
appeared by day 26 (Fig. 2, B, D, and F, 
respectively). Moreover, in  contrast with 
the findings of Lau e t  al. ( I ) ,  co-implanta- 
tion of allogeneic C3H islets of Langerhans 
with congenic FasL-expressing myoblasts 
led to accelerated destruction of the islets 
(Fig. 2G). Untransduced myoblasts differ- 
entiated and oersisted for at least 26 davs. , , 

but FasL myoblasts were destroyed by the 
granulocytic infiltrate (Fig. 2,  H and I). It is 
therefore unclear how Lau e t  al. (1 )  were 
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able to  generate FasL-expressing myoblasts 
that persisted as differentiated multinucle- 
ated myotubes for more than 80 days in 
vivo. Moreover, our data show that islet 
destruction is not  prevented but accelerat- 
ed by FasL-expressing myoblasts, presum- 
ably through a bystander effect mediated by 
infiltrating neutrophils. 

Our findings are in direct conflict w i th  
those reported by Lau et al. ( I ) .  Subtle 

Fig. 1. Expression of Fas as analyzed by FACS. 
Cell populations were analyzed by FACS with the 
use of antibodies against murine Fas combined 
with phycoelythrin (PE). Thin and thick lines show 
FACS plots for control cells and antibody-treated 
cells, respectively. BNLcl2 cells, derived from l i i -  
er, exhibit a s h i  in fluorescence indicative of Fas 
expression and serve as a positive control (top 
panel). Ipr primary myoblasts, which are deficient 
in Fas, exhibit no such s h i  and serve as a nega- 
tive control (middle panel). C3H primary myo- 
blasts (bottom panel) exhibit a shift in fluorescence 
not as great as that seen with BNL cells, but sig- 
nificantly higher than controls, confirming primary 
myoblast expression of Fas. C57BL/6 myoblasts 
gave FACS results indistinguishable from those of 
C3H myoblasts (data not shown). Methods: Cells 
were rinsed with phosphate-buffered saline (PBS) 
and incubated for 2 to 20 min in PBS containing 1 
mM EDTA in order to detach the cells from the 
dish, and the cell suspension (2 xlOS cells) was 
then rinsed twice in PBS and incubated for 20 min 
on ice with the mouse-Fas-specific antibody, PE- 
labeled Jo2 antibody at 0.5 kg/ml (Pharmingen, 
San Diego, California) in medium containing defi- 
cient RPMI, 4% fetal bovine serume, and 10 mM 
Hepes. Cells were then rinsed with FACS buffer 
and analyzed for Fas expression by FACS for PE. 

technical differences can perhaps be in-  
voked; however, it is unclear from our 
studies how myoblasts that express both 
Fas and FasL can avoid apoptosis while 
differentiating or be available to  induce 
apoptosis o f  invading lymphocytes, as pro- 
posed by Lau et al. Even if clones of non- 
Fas-expressing myoblasts were selected by 
Lau et al. (1) and were therefore spared 
from apoptosis, it remains an enigma how 
such FasL-expressing myoblasts escaped 
the granulocytic response that we ob- 
served and which resulted in premature 
elimination of both Fas-deficient myo- 
blasts (lpr) and islets. It has been suggest- 
ed that the exact quantity of FasL ex- 
pressed may be critical in determining 
whether immunoprotection or immunode- 
struction occurs (1 2). However, we and oth- 
ers have found that, although low amounts 
of FasL expression do not  result in granulo- 
cytic infiltration, these aqpunts also do not  
protect against T cell-mediated allograft re- 

Fig. 2. Implantation into kidney. 
Nontransduced or FasL-transduced 
Ipr myoblasts were injected under 
the kidney capsule of congenic 
C57BL/6 mice (2 x 1 O6 mvoblasts 
per kidney, 10 mice per group). (A, 
C, and E) Kidneys transplanted with 
nontransduced myoblasts appear 
normal at all time points asvisualized 
by hematoxylin/eosin (HE) staining 
of sections. (B, D, and F) In contrast, 
each kidney transplanted with FasL- 
expressing myoblasts has a raised 
white lesion revealed by histochem- 
ical analysis to be abundant in neu- 
trophils as identified by nuclear mor- 
phology. A requirement for host Fas 
expression for the granulocytic re- 
sponse was shown by the persis- 
tence over time of FasL-transduced 
rnyoblasts transplanted into Fas-de- 
ficient Ipr hosts (data not shown). (0) 
Allogeneic islets of Langehans 
(600-800/transplant) from C3H mice 
are rejected in 3 + 1 days when co- 
transplanted with congenic FasL- 
transduced Ipr myoblasts (2 x lo6 
per transplant) into streptozocin-in- 
duced diabetic C57BL/6 mice (n = 
3), as determined by serum glucose 
measurements. By comparison, 
C3H islets transplanted alone are re- 
jected in 10 + 1 days (P = 0.001, 
Student's t test). Histology at 7 days 
of co-transplanted kidneys is identi- 
cal to that of FasL-expressing rnyo- 
blasts injected alone, and islets are 

jection (6, 13). FasL-specific activity is 
known to vary as a result of polymorphisms 
(14); however, both Lau et al. (1) and we 
used the C57BL/6 form of FasL known to 
have reduced cvtotoxic ~otential.  Taken to- 
gether, these fiAdings suggest that, although 
FasL may have a role along with other fac- 
tors in the immune privilege of the eye and 
testis, expression of endogenous FasL alone is 
unlikely to suffice. 

In support of this conclusion, most cell 
types and tissues that have been genetically 
engineered to  express FasL have been 
shown to  undergo destruction by neutro- 
phils (5, 6). Thus, FasL expression has com- 
plex consequences (15), and further inves- 
tigation of the effects of dosage, cell con- 
text. and microenvironment are warranted. 
Our observations, although discouraging for 
transplant purposes, suggest other applica- 
tions for FasL and new approaches for de- 
fining the molecular determinants requisite 
for immune protection. 

no longer identifiable. Junction be- 
tween normal renal tissue and the subcapsular grafts is indicated by mows. (H) lmmunohistochemical 
staining with antibodies against desmin (brown) reveals that implantation of untransduced myoblasts led 
to the formation of differentiated muitinucleate myotubes, which were detected for at least 26 days (data 
not shown). (I) By contrast, FasL-transduced myoblasts provoke an intense granulocytic infiltrate and are 
destroyed within 7 days. (A and B) show grafts 3 days after transplantation; x 4  magnification; (C and D) 
3 days after, x8; (E to G) 7 days after, x400; and (H and 1) 7 days after, x200. 
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Response: Kang et al. raise several issues with 
regard to engineered expression of FasL on  
myoblast as a means of giving immunopro- 
tection to islet allografts. In our initial stud- - 
ies, we observed the expression of FasL on  
mvoblasts from C57BLl6 mice cultured over 
a long term; when differentiated in vitro, 
these cells did not undergo apoptosis and 
continued to express functional FasL. In 
contrast, Kang et al. report that FasL expres- 
sion of C 3 H  myoblasts results in apoptosis 
after differentiation. It is unclear why FasL 
expression differs among different myoblast 
populations; perhaps apoptosis resistance is 
acquired during multiple passage, or suscep- 
tibility to FasL-induced apoptosis may be 
strain dependent. W e  have transfected non- 
obese diabetic (NOD) mice myoblasts and 
observed spontaneous cell death; however, 
when myoblasts were preselected with pro- 
longed culture with soluble FasL, we ob- 
tained apoptosis-resistant cells that permit- 
ted subseouent functional exvression of 
FasL. Preliminary co-transplantation exper- 
iments with allogeneic islets with these 
N O D  FasL+ myoblasts have not resulted in 
prolonged survival. This cell mortality may 
be a result of the greater complexity in the 
killine of vrimed T cells that infiltrate and 

u .  

destroy the ~slets, as one would expect to  
find in the diabetic N O D  recipient. 

With regard to  the issue of neutrophilic 
infiltration, we have reexamined the histol- 
ogy of the composite grafts from our initial 
study on  day 3 after transplantation and 
have observed local inflammation, but islets 
and myoblast were present. Histology at  day 
7 revealed local pockets of neutrophilic in- 
filtration, but again, islets and myoblast 
were identified. By the fifth week after trans- 
plantation [as we originally observed ( l ) ] ,  
there was resolution of the inflammation. 
and fused muscle cells were seen on  histol- 
ogy. The  prolongation of islet allograft sur- 
vival we observed appears to be a bystander 
effect of local ex~ression of FasL in which 
there is n o  specificity in the killing of in- 
filtrating T cells. Thus, there may be a race 
between the muscle cells and islets to sur- 
vive the initial inflammation and still effect 
apoptosis of infiltrating activated T cells 
directed against the allogeneic islets. Under 
such circumstances, transplantation of bor- 
derline numbers of islets recluired for cor- 
rection of hyperglycemia would not result 
in long-term correction of the diabetic 
state, because the initial inflammation 

would result in  some attrition of islets. In 
this reeard, as noted in  our initial studies " 

(I  ), we observed fluctuation in glucose in  
diabetic mice receiving the highest num- 
bers of FasL expressing myoblast (2  X lo6). 
In retrospect, this may have represented the 
initial inflammation, which subsided 3 
weeks after transplantation, as reflected in 
stabilization of glucose in  the blood ( I ) .  
T h e  amount of FasL expression may be 
critical in this regard in that there may be a 
balance between FasL inducted local in- 
flammation and immuno~rotection (2) .  , , 

We agree that immune privilege is more 
than the exvression of FasL and that there are 
other factors at work, especially in light of our 
inability to extend these findings to the NOD 
mouse model of spontaneous diabetes. How- 
ever. our initial studies showine that even a - 
bystander effect can prolong islet allograft sur- 
vival (I ) suggest that expression of FasL in the 
context of alloantigen or autoantigen (as in 
the case of islets) may enable specific killing 
of T cells that are activated toward such co- 
expressed antigens. Although muscle cell ex- 
pression of FasL in a local fashion may not be 
applicable across all stains or species (because 
of self apoptosis or destruction by neutrophils 
in a confined space), ectopic FasL expression 
(in the context of an alloantigen or autoanti- 
gen on engineered cells such as muscle) ad- 
ministered systemically may effect specific at- 
tenuation of an immune response. This atten- 
uation has been demonstrated bv Arai et al. 
with the use of an allogeneic tumor cell engi- 
neered to exvress FasL (3 ). These recent find- 

\ ,  

ings may help define a role for the use of 
engineered FasL expression in the modulation 
of immune response. 
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