S B Y S S SN e e T R SR S TR T CEEE TR T T T
ot R Riat e e bk R AR EE I N & L R e i S LRI

=

A mRNA Signal for the Type lll Secretion of Yop
Proteins by Yersinia enterocolitica

Deborah M. Anderson and Olaf Schneewind*

Pathogenic Yersinia species have a specialized secretion system (type lll) to target
cytotoxic Yop proteins during infection. The signals of YopE and YopN sufficient for the
secretion of translational reporter fusions were mapped to the first 15 codons. No
common amino acid or peptide sequence could be identified among the secretion
signals. Systematic mutagenesis of the secretion signal yielded mutants defective in Yop
translation; however, no point mutants could be identified that specifically abolished
secretion. Frameshift mutations that completely altered the peptide sequences of these
signals also failed to prevent secretion. Thus, the signal that leads to the type lll secretion
of Yop proteins appears to be encoded in their messenger RNA rather than the peptide
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sequence.

Secretion of Yop proteins during the
pathogenesis of human or animal infections
allows Yersinia species to evade phagocytic
killing by macrophages (1). After establish-
ing contact with specific host cells, Yersinia
target some Yop proteins directly into the
eukaryotic cytosol where these virulence
factors exert their cytotoxic functions (2—
4). This type I1I secretion of Yop proteins is
thought to occur as a continuous transloca-
tion of polypeptide across the inner and
outer membranes of the bacterial envelope
(5). Yersinia export 12 different Yop pro-
teins by this pathway (1); however, no com-
mon secretion signal within the amino acid
sequences of these polypeptides has been
identified (6, 7). This feature clearly distin-
guishes type Il secretion from other export
pathways in which the secretion signals of
substrate proteins are readily apparent on
the basis of common peptide sequences,
structures, or physical properties (8—10). To
determine whether Yop proteins are marked
for secretion by a covalent posttranslational
modification, we purified, sequenced, and
measured the mass of secreted YopE. The
results indicated that YopE is not modified
- upon export by the Yersinia type 11l machin-
ery (11).

Several other Gram-negative pathogens
also target their cytotoxic proteins into eu-
karyotic host cells (12). Bacterial contact
with the target cell induces expression of
the otherwise tightly regulated export ma-
chinery and secretion substrates (4). Many
components of the type III machinery are
highly conserved among Gram-negative
bacteria (13). Substrate proteins from one
organism can be exported by heterologous
pathogens, suggesting a universal mecha-
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nism for secretion (14). The NH,-terminal
15 to 17 amino acids of Yop proteins have
been proposed to function as a secretion
signal; however, in the absence of a com-
mon peptide, it has been unclear how these
signals can be universally recognized (7,
15). We therefore sought to characterize
the secretion signal through genetic and
biochemical means. We studied two type 111
secretion substrates, YopE and YopN, in
Yersinia enterocolitica by analyzing transla-
tional fusions to cytoplasmic neomycin
phosphotransferase (Npt) (16).

To identify the minimal secretion signal
of YopN, we fused NH,-terminal coding
sequences to Npt (17). Secretion of the
hybrid proteins was measured by immuno-
blot analysis of the sedimented cells or me-
dium of Yersinia cultures induced by tem-
perature shift (37°C) and low calcium con-
centration (18). As reported for YopE (7,
15), the first 15 codons of YopN still al-

lowed secretion of the fused reporter pro-

tein (19), whereas truncating this signal to
10 codons abolished secretion (Fig. 1). Rel-
ative rates of polypeptide synthesis were
analyzed by pulse labeling and compared
with those of another type III secretion
substrate, YopH (20). Truncating the YopE
signal to 10 codons caused a reduction in
synthesis of the fusion protein. This reduc-
tion was apparently caused by an inhibition
of translation, because the relative amount
of mRNA for this fusion protein was similar
to that observed for the Npt hybrid con-
taining the first 15 codons of YopE (21).
We investigated whether the secretion sig-
nal of YopE functioned when moved from
the NH,-terminus by constructing a hybrid
Npt protein that contained YopE fused to
its COOH-terminal end. This hybrid was
not secreted, indicating that the secretion
signal is only functional when located at
the translational start (Fig. 1).

To determine if single amino acid resi-
dues of the YopE and YopN signals were
critically important for secretion, we indi-
vidually replaced codons 2 to 15 with GCA
or GCU, which both specify alanine. The
alanyl substitutions had little effect on se-
cretion of the hybrid Npt proteins (Table
1). However, as measured by pulse labeling,
YopE signal mutants with substitutions at
positions 2 and 15 were synthesized at lower
rates (<50%), and GCA replacement at
codon 4 (YopE,g 4-Npt) completely abol-
ished translation. We also individually mu-
tagenized codons 2 to 15 of the YopE signal
by substitution with GAG encoding glu-
tamic acid. Substitution of hydrophobic or
positively charged amino acids with this
strongly acidic residue did not affect secre-
tion of the mutant proteins, but replace-
ment of codons 2, 3, 4, 10, or 12 caused a
reduction in polypeptide synthesis (<50%).
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Fig. 1. Secretion signals located within codons 1 through 15 of YopE and YopN. Schematic diagram of
hybrid proteins consisting of YopN, YopE, or their truncated derivatives with fused neomycin phospho-
transferase (Npt). All constructs were expressed from their wild-type promoter (YopN or YopE) in Y.
enterocolitica. Numbers refer to the respective codon positions. Secretion was measured by immuno-
blotting of the medium and cell sediment of induced Yersinia cultures and is reported as the percentage
of total protein that is secreted. The relative synthesis of polypeptides [X]/[YopH] was analyzed by
comparing immunoprecipitated substrates after pulse labeling with the amount of immunoprecipitated
YopH. NT, not tested.
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Table 1. Scanning mutagenesis of the secretion signal of YopE,_,s-Npt (pDA46) and YopN,_,5-Npt
(pDA8S). Individual codons of the wild-type sequence were replaced with those encoding either alanine
or glutamic acid. The secretion data were collected by separating culture medium from sedimented cells
and immunoblotting with anti-Npt. The relative amount of synthesized fusion protein [X] was measured
by pulse labeling and is reported as the ratio to another type Ill secreted protein [YopH]. ND, not

determined.
YopE YopN
Residue Ala (GCA) Glu (GAG) Ala (GCU)
Secretion Secretion Secretion
) [X1/[YopH] ) [X1/[YopH] o) [X1/[YopH]

2 50 0.3 75 0.3 49 0.1

3 29 0.7 44 0.2 63 0.1

4 ND 0 33 0.2 51 0.2

5 42 1.0 53 0.4 44 0.2

6 47 0.5 53 0.4 62 0.2

7 56 0.6 50 0.5 46 0.2

8 38 0.8 53 0.4 55 0.2

9 62 0.4 51 0.4 54 0.1

10 63 0.4 46 0.3 47 0.2

11 43 0.4 39 0.4 61 0.2
12 68 0.5 51 0.3 63 0.2
13 57 0.5 38 0.7 55 0.1
14 48 0.6 55 0.4 63 0.2
15 47 0.3 57 0.4 58 0.2
WT 53 0.7 50 0.1

We sought to identify mutations that
abolished substrate recognition of the type
III machinery by drastically modifying the
polypeptide sequence of the secretion sig-
nals. We constructed frame-shift mutations
by inserting or deleting nucleotides imme-
diately after the AUG start codon. The
correct reading frame was restored by recip-
rocal nucleotide insertions or deletions at
the fusion site with Npt. The secretion
signals of both YopE and YopN tolerated
several frameshift mutations, and the al-
tered polypeptides were still secreted (Fig.
2). For YopE, deleting one nucleotide (—1)
or adding two nucleotides (+2) did not
prevent the secretion of hybrid proteins. In
contrast, mutations shifting to the third
reading frame (+1, —2) abolished secre-
tion, and the Npt hybrids remained in the
cytoplasm. This reading frame encodes a

very hydrophobic NH,-terminal peptide, a
physical property that may interfere with its
secretion by the type III machinery (Fig.
2C). For YopN, the +1, —1, +2, and —2
reading frame mutants all allowed secretion.
To test whether frameshift mutations re-
sulted in altered amino acid sequences, we
purified one mutant protein (YopE —1)
from the medium of Yersinia cultures and
confirmed the predicted sequence by Ed-
man degradation (22).

Because several frameshift mutations re-
sulted in proteins that were secreted, we
considered that the secretion signal might
be located within the mRNA sequence. If
this were true, nucleotide changes at the
third position of codons that do not alter
the protein sequence (23) might affect ei-
ther secretion or translation of the hybrid
Npt proteins. We tested codons 2 to 4 of

Table 2. Nucleotide changes at the third position of codon triplets that do not alter the protein sequence
of the secretion signal were introduced into YopN,_,5-Npt. Secretion was measured by immunoblotting
of culture supernatants and cell sediment. The relative amount of synthesized fusion protein [X] was
measured by pulse labeling and is reported as the ratio to another type lll secreted protein [YopH)].
[x]/lyopH] indicates relative levels of mMRNA that were observed by RNA blot hybridization.

YopN, _,5-Npt Codons 2 to 4 Secretion (%) [X]/[YopH] [yg%-l]
Wild type ACG ACG CUU 50 0.1 0.7
Codon 2 ACC ACG CUU 52 0.1 0.2
Codon 3 ACG ACC CUU 39 0.1 0.3
Codon 4 ACG ACG CUG 64 0.1 0.3
Codons 2 and 3 ACC ACC CUU 46 0.1 0.4
Codons 3 and 4 ACG ACC CUG 48 0.1 0.3
Codons 2 and 4 ACC ACG CUG 40 0.04 0.1
Codons 2 to 4 ACC ACC CUG 45 0.1 0.5
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Fig. 2. Frameshift mutations of the secretion sig-
nals of YopN and YopE. Translational reading
frameshifts were constructed by either deleting
(=1, —2) orinserting nucleotides (A or G) (+1, +2)
immediately after the AUG start codon of
YopE,_,5-Npt (A) or YopN,_,5-Npt (B). The cor-
rect reading frame was restored by a reciprocal
change at the fusion site with Npt. Secretion was
measured by immunoblotting and is indicated as
the percentage of secreted protein. Npt alone ex-
pressed from the YopE or YopN promoter was not
secreted. [X]/[YopH)] indicates relative levels of
polypeptide synthesis as measured by pulse la-
beling and immunoprecipitation. The altered pep-
tide sequences of the frameshift mutants are
compared with those encoded by the wild-type
secretion signals (C).

YopN because these positions were sensi-
tive to mutation in the secretion signal of
YopE. Single-nucleotide changes at posi-
tion 2, 3, or 4. of the YopN signal did not
affect either translation or secretion (Table
2). However, combined mutations at
codons 2 and 4 reduced the amount of
mRNA translation, which was restored to
wild-type amounts when the mutant RNA
contained all three altered codons (Table
2). The reduced concentration of the
mRNA with mutations at codons 2 and 4 is
likely caused by its increased degradation
rather than by an effect on transcription
(Table 2).

Several mutations in the secretion sig-
nals of YopE and YopN either reduced or
abolished synthesis of the recombinant pro-
teins. These mutations may hinder Yop
translation, for example, by interfering with
ribosome binding or translational initiation.
Alternatively, this mutational phenotype
could represent a defect in the recognition
of an mRNA signal that ultimately leads to
the secretion of Yop proteins. Suppressor
mutations that restore a translational defect
of the YopE,s ,-Npt mutant (pDA54,
GCA replacing TCA at codon 4) should
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alter the mutant codon, whereas mutations
that suppress a signal-recognition defect
could also be located at other positions
involved in contacting the secretion ma-
chinery. We selected spontaneous mutants
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Fig. 3. Predicted RNA structures of the YopE and
YopN secretion signals compared with that of the
Npt mRNA. RNA sequences were subjected to
folding analysis as described (26). The displayed
structures show an area encompassing the
Shine/Dalgarmno  ribosome binding site  (filled
squares), start codon (AUG, boxed), and down-
stream sequence of the YopE and YopN secretion
signals [AG values (Gibbs energy) of —89.5 kj
(YopE) and —102.9 kj (YopN)]. Nucleotides sen-
sitive to mutation are circled. Mutations that abol-
ished synthesis and secretion of reporter proteins
are shadowed and their suppressors are indicat-
ed in bold.
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by plating Yersinia enterocolitica harboring
pDAS54 on agar medium containing neomy-
cin (24). Nine independent mutants were
analyzed by immunoblotting; each of them
synthesized and secreted the Npt fusion
protein in a manner similar to that observed
for the wild-type construct. These isolates
were intragenic suppressors that contained
mutations located at codons 2 through 6
and 12 (Table 3). Transversion of the nu-
cleotide at the third position of codon 12
(CCC to CCA) restored translation and
thus secretion of the hybrid protein without
an alteration of its amino acid sequence.
This mutation was found in every suppres-
sor isolate and was sometimes combined
with mutations at codons 2, 4, or 5 or a
deletion of codon 6. Although these results
do not permit a definitive explanation, we
think it is more likely that the mutational
change at codon 4 abolished the recogni-
tion of an mRNA signal rather than causing
a hindrance of translational initiation.
Other secretion or protein-targeting sig-
nals do not tolerate such drastic mutational
changes without a loss of function. The
reason for this difference may reflect the
mode of substrate recognition by the type
III machinery. RNA may be the carrier of a
signal that ultimately leads to the export of
encoded Yop proteins. One possible mech-
anism is that the mRNA signals cotransla-
tional secretion by the type I1I machinery.
In support of this hypothesis, pulse-chase
experiments of Y. enterocolitica cultures re-
vealed that YopE was secreted during a
short pulse with **S-methionine but not
after the addition of unlabeled methionine,
suggesting that secretion occurred during
the ribosomal synthesis of YopE (25). Yop
translation might be inhibited by an intrin-
sic property of the mRNA that can be
relieved by its interaction with the secre-
tion apparatus. Most mutations that affect
recognition of an RNA signal would there-
fore abolish both secretion and transla-
tion. An uncoupling of secretion from

Table 3. Spontaneous suppressor mutations of YopE ,5_s-Npt were selected by plating Y. enterocolitica
harboring plasmid pDA54 (YopE,s_-Npt) on tryptic soy agar plates with neomycin (50 wg/ml). Plasmid
was purified from individual colonies and transformed into W22703, and plasmid transformants were
selected on chloramphenicol plates. Individual isolates were tested for resistance to neomycin [minimal
inhibitory concentration (MIC) for 10% cells], relative concentration of mRNA ([x]/[yopH]), synthesis
(IX1/TYopH]), and secretion of hybrid Npt proteins. Mutational changes of the suppressors were
determined by DNA sequencing. ND, not determined.
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translation might result from larger dele-
tions of the signal that destroy its struc-
ture. We have incorporated some of the
mutations described here in predicted
RNA structures of the YopE and YopN
secretion signals (26) (Fig. 3). Common to
both structures is a stem loop that buries
the AUG translational start in a base-
paired duplex while positioning codons 2
to 4 within a loop. Mutations that abol-
ished translation are located either within
the predicted loop or its adjacent base
pairs, that is, at positions typically recog-
nized by RNA-binding proteins (27).
Such an RNA structure would have to
undergo dynamic changes because it
would have to first assume an untranslat-
able fold, which could then be relieved by
specific interaction with components of
the secretion machinery.
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