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Thermoregulation in the Mouths of
Feeding Gray Whales

John E. Heyning and James G. Mead

Vascular structures for heat conservation in the tongue of the gray whale (Eschrichtius
robustus) are reported here. Numerous individual countercurrent heat exchangers are
found throughout the massive tongue. These converge at the base of the tongue to form
a bilateral pair of retia. Temperature measurements from the oral cavity of a live gray
whale indicate that more heat may be lost through the blubber layer over the body than
through the tongue, despite the fact that the tongue is far more vascularized and has
much less insulation. These heat exchangers substantially reduce heat loss when these

whales feed in cold waters.

Because of the high thermal conductivity of
water, the oceans and seas are energetically
challenging environments for endotherms.
Countercurrent heat exchangers in the vas-
cular system of whales assist in the regulation
of body temperature (I): those within the
fins and flukes (2) function to conserve core
body temperature, whereas those associated
with the reproductive tracts (3) serve to
prevent hyperthermia in these heat-sensitive
organs. The mouths of baleen whales (sub-
order Mysticeti) are relatively large, in order
to accommodate the filtering surface com-
posed of baleen, and the oral cavity of baleen
whales is a major site for heat loss during
feeding. To date, there have been no mea-
surements to quantify this loss (4), nor have
any structures been identified that would
serve to reduce it.

In each of two young gray whale calves
dissected (5) (LACM 88981, 3.98 m long;
and LACM 92044, 5.25 m long), we found
numerous individual countercurrent heat
exchangers spaced throughout the tongue
(Fig. 1A). These periarterial venous retia
(6) consist of a single central artery encir-
cled by a sheath of surrounding veins and
are about 0.5 cm in diameter, making them
similar in size to the individual countercur-
rent heat exchangers within the flukes of
the same animals. The groups of blood ves-
sels are oriented in planes, so that cool
venous blood returning from the surface of
the tongue flows first ventrally then poste-
riorly toward the back of the tongue. Along
the posterior half of the base of the tongue,
these individual countercurrent heat ex-
changers converge to form a bilateral pair of
large vascular retia (Fig. 1B), each com-
posed of over 50 such heat exchangers ori-
ented adjacent and parallel. We term each
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vascular bundle a lingual rete. In the
5.25-m calf, each of these lingual retia was
about 13 by 2 cm in cross-section and ap-
proximately 55 cm long. The lingual retia
form one of the largest countercurrent heat
exchangers described in any endotherm (2,
3). At the base of the tongue, these heat-
exchanger retia sweep dorsally and separate
into numerous individual arteries and veins
that connect to the external carotid artery
and jugular vein, respectively. The counter-
current vascular retia are situated in the
fascial plane located between the tongue
muscles (styloglossus, hyoglossus, and in-
trinsic tongue muscles) and the more super-
ficial gular muscles (geniohyoideus and
myohyoideus). This vascular complex is de-
rived from the lingual arteries and veins.

The distinct lingual artery is short, bi-
furcating into numerous arteries about 3
cm distal to the external carotid artery.
This proliferation of arteries just proximal
to the lingual rete functionally increases
the cross-sectional area of this vascular
system and the surface area of the blood
vessel walls. Both of these structural at-
tributes function to slow blood flow in any
single vessel, thereby increasing the time
available for the transfer of heat from ar-
teries to veins. This should greatly en-
hance the efficiency of the countercurrent
heat-exchanger system.

We measured a lingual surface area of
0.325 m? in the 5.25-m specimen, which
yields an estimated surface area of 2 m? for
a 12-m adult. This represents approximately
5% of the surface area of the body (7),
excluding the extremities. Because a mobile
and dexterous tongue is needed to control
water flow over the baleen, the tongue
could not properly function if it were
cloaked with a thick, semirigid adipose layer
similar to the blubber encasing the body.
However, the outer surface of the tongue is
invested with a diffuse layer of fatty tissue
about 2 cm thick.

Skin surface temperature relative to am-
bient temperature is a good indicator of
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Fig. 1. (A) Schematic diagram of the vascular heat exchanger in a gray whale
calf (LACM 92044). Head length, 120 cm. (B) Cross section through the left
lingual rete, composed of numerous individual countercurrent heat exchang-

ers (scale is in centimeters).

heat loss and can identify areas of regional
heterothermy (8). We measured the surface
temperature of the tongue and the skin of
the body of a live gray whale calf during a
series of feedings (9) in water temperatures
of 19.5° and 12.5°C. When the calf first
opened its mouth to suckle on a feeding
tube, the temperature of the surface of the
tongue was 1.5° to 3°C above the temper-
ature of the skin on the dorsum of the head
and cervical region. After about 1 min of
suckling, with the oral cavity only slightly
open to the water, the surface temperature
of the tongue dropped to 0.5°C above the
ambient water temperature and was 0.5° to
2.0°C below the temperature of the skin.
The minor temperature differential be-
tween the tongue and the ambient water
suggests that there was little heat transfer
out of the tongue. During these measure-
ments, the vivid pinkish hue of the tongue
did not change noticeably, implying that
the animal was not constricting blood flow
to the tongue as a mechanism to conserve
heat when the mouth was opened. All tem-
perature measurements were taken when
the animal briefly raised its head out of the
water during feeding bouts; therefore, these
measurements were not influenced directly
by either water flow or boundary layer ef-
fects. Thus, we conclude that the drop in
temperature on the surface of the tongue
was a result of recirculation of heat back to
the body core via the countercurrent heat
exchanger. Although it has not been re-
ported in the literature, it is reasonable to
assume that the core body temperature of a
gray whale is similar to the core tempera-
ture of the closely related balaenopterid
whales, which is 35° to 36°C (10).
Although this test was conducted in
what is for a gray whale a thermally unchal-
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lenging environment, these data suggest
that gray whales can lose more heat through
the blubber layer over their bodies than
through the tongue, in spite of the fact that
the tongue is far more vascularized and
possesses much less insulation. This is due
to the extreme length of the lingual coun-
tercurrent heat exchanger and the reduced
rate of blood flow within each vessel be-
cause of the proliferation of blood vessels
associated with the retia. The combined
effect creates an extremely efficient thermal
gradient over which heat can be transferred
and thereby conserved.

Gray whales, like most species of baleen
whales, feed in high-latitude waters during
the summer. Scanty observations (11-17)
suggest that all baleen whales possess coun-
tercurrent heat exchangers in their oral
cavities, a physiological prerequisite allow-
ing these endotherms to exploit the rich
marine productivity of cold waters.
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