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Role of Sensory-Evoked NMDA Plateau
Potentials in the Initiation of Locomotion

Gonzalo Viana Di Prisco, Edouard Pearlstein, Richard Robitaille,
Réjean Dubuc*

Reticulospinal (RS) neurons constitute the main descending motor system of lampreys.
This study reports on natural conditions whereby N-methyl-D-aspartate (NMDA)-medi-
ated plateau potentials were elicited and associated with the onset of locomotion.
Reticulospinal neurons responded in a linear fashion to mild skin stimulation. With
stronger stimuli, large depolarizing plateaus with spiking activity were elicited and were
accompanied by swimming movements. Calcium imaging revealed sustained intracel-
lular calcium rise upon sensory stimulation. Blocking NMDA receptors on RS neurons
prevented the plateau potentials as well as the associated rise in intracellular calcium.
Thus, the activation of NMDA receptors mediates a switch from sensory-reception mode

to a motor command mode in RS neurons.

Locomotion can be initiated, guided, and
controlled by an array of sensory cues ().
Cutaneous inputs elicit bouts of locomotion
in intact lampreys (2), but the cellular
mechanisms by which this occurs are still
unknown and are the subject of this study.
We used a semi-intact in vitro preparation
to characterize the cellular mechanisms re-
sponsible for the transition from sensory
responses to motor activity, such as swim-
ming (3). The advantage of such a prepa-
ration is that the sensory inputs are left
intact as well as some of the muscles, so that
active behavior may be elicited with all the
advantages of a standard in vitro prepara-
tion. Reticulospinal (RS) neurons consti-
tute the main descending motor system (4).
They receive sensory inputs from several
modalities (5-7), including cutaneous in-
puts (8), and in turn they make direct syn-
apses with motoneurons and interneurons
involved in the segmental generation of
locomotion (9). Because of their large size

G. Viana Di Prisco, E. Pearlstein, R. Robitaille, Départe-
ment de Physiologie, Centre de Recherche en Sciences
Neurologiques, Université de Montréal, C.P. 6128, suc-
cursale Centre-Ville, Montréal, Québec, Canada, H3C
3J7.

R. Dubuc, Département de Kinanthropologie, Université
du Québec a Montréal, Montréal, C.P. 8888, succursale
Centre-Ville, Québec, Canada, H3C 3P8 and Départe-
ment de Physiologie, Centre de Recherche en Sciences
Neurologiques, Université de Montréal, C.P. 6128, suc-
cursale Centre-Ville, Montréal, Québec, Canada, H3C
3J7.

*To whom cormrespondence should be addressed. E-mail:
dubucr@ere.umontreal.ca

and easy access for electrophysiological
studies in controlled in vitro conditions,
lamprey RS neurons provide an excellent
model for investigation of the mechanisms
underlying the transformation of sensory
inputs into motor commands in vertebrates.

An in vitro brainstem preparation (10)
was used in which the skin covering the
dorsal head region was left attached (Fig.
1A). Mechanical stimulation of the skin
elicited postsynaptic potentials (PSPs) in
RS neurons (Fig. 1B). The amplitude of the
synaptic responses showed a remarkable lin-
ear relation with the stimulus strength
when mild stimulation was used (Fig. 1B).
Under these conditions, RS cells behaved
as close followers of sensory inflow, the time
course of the excitatory PSPs being perfect-
ly tuned to the variation of the force ap-
plied to the skin (inset of Fig. 1D). Because
somatosensory inputs to RS neurons in-
volve a di-synaptic pathway, this close re-
lation implies powerful synaptic connec-
tions. When stronger stimuli were delivered
to the skin, large depolarizing plateaus were
elicited, which were accompanied by spik-
ing activity (Fig. 1C); the stimulus-response
relation then switched from a linear propor-
tional function to a nonlinear function (Fig.
1D). In a semi-intact preparation (I1) in
which the brainstem and rostral spinal cord
were exposed in vitro with the tail left
intact to move freely (Fig. 2A), the depo-
larizing plateaus were accompanied with
swimming movements. A long-lasting de-
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stimulation. The gray area in the main graph is illustrated in the inset. With
mild stimuli, the input-response curve showed a linear relation (- = 0.96). With increased stimulation strength, the relation became nonlinear. The
stimulus-response relation has been approximated by an exponential growth curve; equation: y = y, + A.e™, where y, (y offset) = 0, A (amplitude) =
3.00009, and t (time constant) = 0.23453 (r = 0.88). :

polarization (plateau potential) occurred,
with superimposed spiking activity correlat-
ed with the electromyographic (EMG)
swimming activity (Fig. 2B). The plateau
lasted for the whole duration of locomotor
activity. The subthreshold responses elicit-
ed by mild skin stimulation were not ac-
companied by motor responses. The initia-
tion of depolarizing plateau potentials in RS
neurons may thus underlie the initiation of
locomotor behavior in response to a skin
stimulation. As action potentials are gener-
ated in the descending axons, the excitabil-
ity level of the spinal cord networks rises
and locomotion is induced.

Because NMDA receptors (NMDARs)
are present in the cutaneous pathway to RS
neurons (12), we tested the possibility that
the switch from a linear input-response rela-
tion to a nonlinear one may be mediated by
properties of the recorded cell such as the
activation of NMDARs. The NMDAR
blocker  2-amino-3-hydroxy-5-phosphono-
pentanoate (AP5; 200 uM) was added to the
perfusate (Fig. 3A), and its effect on the pla-
teau potentials was tested. Under this con-
dition, the long-lasting depolarizing plateaus
were abolished (n = 6). However, because
AP5 may also have affected transmission at
the synaptic relay, it was applied locally by
pressure-ejecting it on the surface of the
recorded RS cell. The relay cells were locat-
ed in the alar plate more than 800 pm away
and thus were well beyond reach of the
injection. This local application abolished
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the long-lasting depolarizing plateaus (Fig.
3B), which indicates that NMDARSs located
on the postsynaptic membrane of RS neu-
rons are involved in mediating the plateaus.
Moreover, the nonlinear relation in the in-
put-response curve disappeared after AP5, as
plateau potentials could not be elicited un-
der these conditions (Fig. 3C) (13).

The activation of NMDARs leads to
Ca?* entry into the cell. To further eluci-
date the role of NMDARs in RS neurons, we
used calcium imaging (14). We studied the
pattern of activation of groups of RS neurons
in different brainstem reticular nuclei imme-
diately after stimulation of trigeminal affer-
ents (either by direct electrical stimulation
of the nerve or by mechanical stimulation of
the skin covering the snout) (Fig. 4A). We
found that with low-intensity stimulation,
transient Ca?* responses occurred in popu-
lations of RS neurons including the Mauth-
ner cells (Fig. 4B). With stronger intensities,
a nonlinear sustained Ca?* plateau response
appeared, which lasted for several seconds or
minutes. These Ca?* plateaus were accom-
panied by depolarizing plateau membrane
potentials, as confirmed with simultaneous
optical imaging and intracellular recordings
(Fig. 4C). The application of AP5 practical-
ly abolished not only the depolarizing pla-
teaus but also the increase in intracellular
Ca’* in the same neurons (n = 3, Fig. 4D),
which indicates that NMDARs are also in-
volved in the Ca?* response.

The present results indicate that identi-
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Fig. 2. Plateau potentials and the onset of locomo-
tion. (A) Schematics of a semi-intact preparation,
where the tail is left intact and can freely swim. EMG
activity was recorded from the midbody region on
the side contralateral to the intracellular recording.
(B) Mechanical stimulation of the skin covering the
head region elicited a plateau of depolarization in
an RS cell. After the onset of the plateau, locomotor
movements of the tail were elicited. Note the bursts
of discharge in the EMG signal.

fied RS neurons in the lamprey have an
inherent nonlinearity that allows them to
generate long-lasting, NMDA-dependent
depolarizing plateaus accompanied by Ca?*
entry into the cell. The occurrence of these
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plateaus makes the neuron switch from a
sensory-reception mode to a motor com-
mand mode that activates the spinal loco-

motor networks. NMDARs are known to
play an important role in both sensory and
motor systems (15). In particular, there is
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Fig. 4. Ca2* responses in RS neurons. (A) Schematics of the experimental setup for Ca2* imaging of RS
cells. (B) RS neurons in the middle rhombencephalic reticular nuclei displayed an increase in fluores-
cence when the trigeminal nerve or the skin covering the head region was stimulated. (C) Calcium
response (Ca2*,, top trace) of an RS cell soma that was simultaneously recorded with a sharp micro-

electrode (V,,

, lower trace). The windup of depolarization and spiking induced by repeated stimuli

(indicated by arrows) coincided with an increase in fluorescence. (D) An example from a different cell,
showing that both the depolarizing plateau (V,,,) and the calcium response (Ca?*) were depressed by the
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plateau potentials. (C) Stimulus-response curve in one RS neuron before APS
(solid circles; exponential growth curve fitting y = y,, + A.e®9, where y, = 0,
A=1223112,andt = 0.80898; r = 0.92) and after AP5 (open circles; curve
is a linear regression fit; r = 0.91).

ample evidence that excitatory amino acid
transmission, especially that involving
NMDARSs, is involved in the generation of
locomotion in vertebrates such as lampreys,
frogs, rats, and cats (16). This study estab-
lishes a new role of NMDARs in integrated
behavior related to their voltage-dependent
properties and linked to the brain-stem ini-
tiation of locomotion.

The initiation of locomotion in the lam-
prey is likely to require the activation of
several RS cells. We report here that RS
cells behave in a similar fashion to inverte-
brate “command neurons” that when stim-
ulated elicit coordinated movements (I17).
Indeed, dorsal ramp interneurons that trig-
ger swimming in the marine mollusk Trito-
nia diomedea display similar plateau poten-
tial properties (18). The depolarization pla-
teaus may be a general feature by which
rapid motor commands are elicited in re-
sponse to sensory cues in several animal
species, including humans (19).
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Structural Plasticity in a Remodeled
Protein-Protein Interface

Shane Atwell, Mark Ultsch, Abraham M. De Vos,
James A. Wells*

Remodeling of the interface between human growth hormone (hGH) and the extraceilular
domain of its receptor was studied by deleting a critical tryptophan residue (at position
104) inthe receptor, creating a large cavity, and selecting a pentamutant of hGH by phage
display that fills the cavity and largely restores binding affinity. A 2.1 A resolution x-ray
structure of the mutant complex showed that the receptor cavity was filled by selected
hydrophobic mutations of hGH. Large structural rearrangements occurred in the inter-
face at sites that were distant from the mutations. Such plasticity may be a means for
protein-protein interfaces to adapt to mutations as they coevolve.

Protein-protein interfaces are usually large
and elaborate, consisting of 10 to 40 con-
tact side chains, each of which interdigi-
tates with several others across the interface
(1). The contact side chains are often pre-
sented from discontinuous segments of each
polypeptide chain. Given the complexities
of these interactions, we wondered how a
functionally disruptive mutation on one
side of the interface could be complement-
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ed by mutations in its binding partner. This
is a challenge that nature faces as protein
complexes coevolve.

We studied this problem by phage dis-
play using the high-affinity interface be-
tween hGH and the extracellular domain of
its receptor (hGHbp), members of a cyto-
kine-receptor superfamily (2). The hor-
mone and receptor initially form a tight 1:1
complex (dissociation constant K; = 0.3
nM), and the x-ray structure of this com-
plex is known to high resolution (3). There
are about 30 contact side chains on each
side of this interface, but alanine-scanning
mutagenesis has shown that only a small set
of primarily hydrophobic contacts at the
center of the interface dominate affinity (4,
5). This energetic “hot spot” on the recep-
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