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Biomass Collapse in Amazonian 
Forest Fragments 

William F. Laurance,* Susan G. Laurance, Leandro V. Ferreira, 
Judy M. Rankin-de Merona,? Claude Gascon, 

Thomas E. Lovejoy$ 

Rain forest fragments in central Amazonia were found to experience a dramatic loss of 
above-ground tree biomass that is not offset by recruitment of new trees. These losses 
were largest within 100 meters of fragment edges, where tree mortality is sharply 
increased by microclimatic changes and elevated wind turbulence. Permanent study 
plots within 100 meters of edges lost up to 36 percent of their biomass in the first 10 to 
17 years after fragmentation. Lianas (climbing woody vines) increased near edges but 
usually compensated for only a small fraction of the biomass lost as a result of increased 
tree mortality. 

Habi ta t  fragmentation affects the ecology 
of tropical rain forests in Inany ways, such as 
altering the diversity and composition of 
fragment biotas, and changing ecological 
processes like nutrient cycling and pollina- 
tion ( 1 ,  2) .  Recent evidence indicates that 
fragmentation also alters rain forest dynam- 
ics, causing sharp increases in the rates of 
tree mortality, damage, and canopy-gap for- 
mation, apparently as a result of microcli- 
matic changes and increased wind turbu- 
lence near forest edges (3). Here we dem- 
onstrate that in central A~nazonian rain 
forests, fragmentation is having an eclually 
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measurable effect on above-ground biomass. 
Given that more than 15 x lo6 ha of 
tropical forest are being cleared and frag- 
mented annually (41, a decline of biomass 
in forest remnants could be a significant 
source of greenhouse gases such as C 0 2 ,  
released upon decay. 

The study area, an experimentally frag- 
mented landscape spanning about 20 km by 
50 km, is located 80 km north of Manaus, 
Brazil (2'30'S, 60°W), at an elevation of 
100 to 150 In. Between 1980 and 1986 a 
series of replicate forest patches of 1, 10, 
and 100 ha in area were isolated by clearing 
and often burning the surrounding vegeta- 
tion to create cattle pastures. A total of 39 
permanent, square, 1-ha study plots were 
established in four 1-ha fragments, three 
10-ha fragments, and two 100-ha fragments, 
and 27 identical control plots were located 
in nearby continuous rain forest. The plots 
in the fragments were stratified so that edge 
and interior areas were both sampled. More 
than 1000 tree species have been identified 
in the s t ~ ~ d y  plots (5). 
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T h e  plots n.ere initially censused be- 
tween January 1980 and January 1987, then 
subseauentlv censused two to five times. 
with ;he last census in  early 1997 (mean of 
3.6 censuses per plot). Estimates of above- 
ground dry biomass (AGBM) for each plot 
were derived bv carefullv measuring the  di- u 

alneters of all trees 2 1 0  cm diameter-at- 
breast-height (DBH),  except for buttress 
trees, which were measured just above the 
buttresses. DBH values were cross-checked 
for outliers (for example, declines of >5 
mm or increases of >15 mm per year) by 
comparing m ~ ~ l ~ i p l e  measurements over 
time of the sade tree. DBH measurements 
were converted to biomass estimates with 
an  allometric model derived bv using 319 " 

trees from local rain forests (6). Total 
AGBM estimates for each olot were adiust- 
ed upward by 12% to  account for trees of 
<10 cm DBH (7). Lianas (climbing woody 
vines) of 2 2  cm DBH were recorded in 21 
of the  plots in  1997 and converted to bio- 
inass estimates with a DBH-AGBM formula 
developed for Venezuelan rain forests (8). 

W e  used linear regressions to estimate 'z 

the  rate of change in biomass o n  each plot 
(using AGBM as the  dependent variable 
and the  number of months since January 
1980 as the  independent variable). Slope 
terms for each plot were converted to  met- 
ric tons of AGBM per hectare per year. T h e  
rate of biomass loss was significantly related 
to  the  distance of olots from the  nearest 
forest edge (Fig. 1 ) .  O n  average, plots with- 
in 100 m of edges lost 3.5 2 4.1 tons ha-' 

during the  first 10 to  17 years after 
fragmentation, with some plots losing up to  
36% of their total A G B M  (mean i S D  = 

8.8 i 10.2%, n = 30) .  Forest-interior plots 

Distance to forest edge (m) 

Fig. 1. Rate of change in above-ground tree bio- 
mass as a function of distance of the plots from 
the forest edge. The solid line IS an exponentla1 
cutve f~tted to the data. and the dashed Ines are 
95% conf~dence ntervals for 26 forest-interior 
plots (>500 m from edge). The curve formula is 
bomass change = 9.58 - (22.47 x exp[-0.28 x 
log (distance to edge)]). A nea r  regression com- 
paring observed and f~tted values was highly sig- 
nificant [F(1,64) = 21.47. R2 (coeffc~ent of deter- 
mination) = 25.1 %. P = 0.000021. 

( 2 1 0 0  In from the edge) exhibited 110 sig- 
nificant changes in  AGBM over the  time 
period studied, with 15 plots decl in~ng and 
21 increasing (P = 0.203, sign test). 

T o  examine the  actual kinetics of bio- 
mass loss, we plotted the  mean percent 
decline of A G B M  in 16 edge plots that  had 
lost 2 3  tolls ha-' year-' since fragmenta- 
tion (Fig. 2). Mean AGBM dropped sharply 
within 4 years of fragmentation, then 
roughly stabilized thereafter. A t  least within 
10 to 17 years of fragmentation, recruitment 
of new trees ( 2 1 0  cm DBH) has not  offset 
losses caused by tree mortality. 

Lianas, the  only other abundant woody 
plants in the  study area, have increased in 
plots within 100 I n  of edges, from 5.4 i 0.7 
to 7.9 i 1.7 tons ha-' (9) .  However, o n  
most edge plots these increases c o n s t i t ~ ~ t e  
only a small fraction ( < 8 % )  of the  biomass 
lost from elevated tree mortality. 

Our long-term study, involving Inore than 
137,000 DBH rneasurelnents of >56,000 
trees, has revealed that the dynamics and 
biomass of fragmented rain forest are being 
filndamentally altered. Although growth of 
lianas and new trees (10) has increased in 
fragments, these have not offset the sudden 
loss of AGBM caused by the deaths of Inany 
large trees, which contain a disproportionate- 
ly large fraction of AGBM. It is not yet known 
whether AGBM in fragments will eventually 
recover to the levels present before fragmen- 
tation or whether fragments will reach a new 
equilibrium that is lower than that of the 
original forest. W e  suspect the latter is more 
likely because fragmented forests are prone to 
recurring wind disturbance (3,  1 1 ), which can 
kill and damage many large trees. If this is the 
case, complex, old-growth rain forests will 
tend to be replaced by shorter, scrubby forests 
with smaller volulne and biomass. T h e  bio- 
mass losses described here are actually ~mder-  
estimates because rates of major tree damage 

I 
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Years after fragmentation 

Fig. 2. Mean decne  (k SE)  in AGBM in 16 study 
plots before and after forest fragmentation (sam- 
ple sizes: before fragmentation = 14; 0 to 2 
years = 6 ;  2 to 4 years = 1 1 ; 4 to 6 years = 15; 6 
to 8 years = 9; >8 years = 11). 

(broken crowns or snapped trunks) are nearly 
as high within 100 m of edges (2.82% per 
year) as is tree mortality (3.04% per year) (3). 
Hence, for every tree that dies, another is 
badly damaged, and a portion of that tree's 
biomass is lost. 

T h e  loss of blo~nass is a oreviouslv u11- 
recognized and u~~an t i c ipa ted  consecluence 
of habitat fragmentation. Because A G B M  " 

declines near forest edges, the  magnitude of 
biomass loss will depend o n  the  spatial pat- 
tern of deforestation, which determines the  
sizes and shaoes of forest fragments. Math- - 
e~nat ical  models suggest edge-related tree 
mortality alld damage will increase sharply 
once A~nazonian fragments fall below 100 
to 400 h a  in area, depending o n  fragment 
shape (3). Fragments in anthropogenic 
landscapes comlnonly fall within or below 
this size range (2 ) ,  suggesting that the  loss 
of biomass in recently fragmented land- 
scapes could be a significant source of 
greenhouse gas emissions. Given the rapid 
rate of forest fragmentation in  the  trooics " 
(4), such emissions may exacerbate effects 
of global warming above and beyond that 
caused by forest clearing per se. 
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