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Lake Baikal Record of Continental Climate internal climate system feedbacks, as well as 

Response to Orbital Insolation During the to provide a stratotype for continental pa- 
leocli~nate studies. 

Past 5 Million Years 
D. F. Williams," J. Peck, E. B. Karabanov, A. A. Prokopenko, 

V. Kravchinsky, J. King, M. I. Kuzmin 

The sedimentary record of biogenic silica from Lake Baikal in south-central Siberia 
suggests that this region of central Asia was impacted by two major cooling episodes 
at 2.8 to 2.6 and 1.8 to 1.6 million years ago. The spectral evolution of this continental 
interior site parallels the evolutionary frequency spectra for various marine oxygen 
isotope records. In the Baikal record, the 41,000-year obliquity cycle is particularly strong 
from 1.8 to 0.8 million years ago; variance in the 100,000-year eccentricity band increases 
during the past 0.8 million years. The expected precession frequency of 23,000 years is 
highest during the past 400,000 years. The modulation of the predicted 23,000- and 
41,000-year insolation forcing by the 100,000- and 400,000-year eccentricity bands 
indicates that the transfer of variance from the precession and obliquity frequencies to 
the eccentricity part of the spectrum occurred in the Eurasian continental interior, as well 
as in tropical and high-latitude ocean sites. 

Simulations of the response of Earth's cli- 
mate system to changes in both external 
(1-3) and internal boundary conditions (4- 
9) have led to new understanding of the 
evolution of the Asian monsoonal system 
and African and Arabian continental arid- 
ity and moisture patterns through time. The 
general pattern of the Asian climate re- 
sponse for the past 30 thousand years (ky) is 

fairly well known from lake piston cores 
( lo ) ,  and for the past 2.6 million years 
(Ma), it is known from the Chinese loess 
sections (1 1, 12). However, long, high-res- 
olution sedimentary sections with multiple 
climate vroxies have not been available for 
the high-latitude, continental interior re- 
gions of central Eurasia. Energy balance 
modeling (3) has suggested that the tem- 
verature resuonses of this region lnav have 
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from the 41-ky obliquity cycle according to 
the Milankovitch theory (13). The recent 
recovery of sedimentary records for the past 
5 Ma from Lake Baikal, in south-central 
Siberia (14), provided an opportunity to 
test climate model projections on the re- 
sponse of central Eurasian watersheds and 
ecosystems to external orbital forcing and 

Lake Baikal is the world's largest and 
deevest freshwater lake 11 5). Because Lake , , 

Baikal is located in the continental interior, 
its hydrodynamic system and biological pro- 
ductivity are sensitive to solar energy vari- 
ations (16), which in turn are accurately 
recorded through the flux of biogenic silica 
and diatom abundance to the bottom sedi- 
ments ( 1  7-20). To develop an understand- 
ing of Baikal's response to paleocliinate pro- 
cesses, we adopted a strategy similar to that 
used in the study of marine records by 
studying Baikal cores with multiple climate 
proxies (21-23) and detailed accelerator 
Inass spectrometry radiocarbon dates for the 
past 25 ky (24, 25). Spectral analysis of 
records spanning the past 250 ky (22, 25) 
has provided evidence that orbital freque11- 
cies are embedded in and resolvable from 
the Baikal record (26). 

From January to April 1996, a Russian 
scientific drilling team successf~~lly recov- 
ered a sedi~nentary record spanning the past 
5 Ma from a deep-water topographic high 
known as the Academician Ridge (27). I11 

Baikal Drilling Program 1996 (BDP-96) 
hole 1. 93'16 of the core was recovered in the 
upper 119 In. Because rotary drilling was 
used to comvlete drilling to a total subbot- " 
toin depth of 300 in, coring recovery aver- 
aged 61% from 119 to 192 m subbotto~n (for - 
technical reasons, only logging was done 
between 192 and 300 m). 111 hole 2. 99% of 
the core was recovered with an advanced 
hydraulic piston corer (APC) to a subbot- 
tom depth of 100 In. Coinparison of detailed 
inclination urofiles for holes 1 and 2 with a 
reference geomagnetic polarity time scale for 
the Neogene (Fig. 1, A through C) (28-30) 
reveals that the basal age is about 5 Ma; 
robust reversal boundaries provide 13 age 
control points. A plot of the age-depth re- 
lation based on these geomagnetic polarity 
boundaries shows that the hemipelagic ac- 
cuinulation rate is a nearly constant 4 cm 
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kyp' over the past 5 Ma and that there are 
no major hiatuses or disconformities (Fig. 
ID). Diatom-rich and diatom-poor sedi- 
ments (Fig. 1E) alternate in the core, which 
is indicative of the restructuring of the 
Baikal ecosystem as a result of glacial-inter- 
glacial climate changes during the late Pleis- 
tocene ( 1  7-20). Previous work has shown 
that the diatom abundance and biogenic 
silica records for the BDP-96 cores can be 
used to reveal the basic structure of the 
Plio-Pleistocene glacial-interglacial cycles 
for south-central Siberia over the past 5 Ma 
(Fig. 1, E and F) as compared with the 
evolution of glbbal ice volume for the past 5 
Ma from Ocean Drilling Program (ODP) 
site 846 (30) (Fig. 1G). A comparison of the 
polarity age model for the past 2.45 Ma with 
that derived from correlation of the BDP-96 
biogenic silica record with the ODP site 846 
S1'O record (Fig. 1H) shows that the corre- 
lation only shifts the BDP-96 record a few 
thousand years or less and confirms that the 
sedimentation rate is uniform at this site and 
that there are no signs of disconformities. 

A general cooling trend of the Northern 
Hemisphere can be ,seen in the BDP-96 
diatom record (Fig. 1E). For example, gla- 
cial clays in the upper 70 m of the core (the 
past 1.6 to 1.7 Ma) are nearly barren of 
diatoms (0 to 5%), whereas clays between 
depths of 11: and 192 In have diatom con- 
tents ranging from 5 to 15% (31). Climates 
were warm, seasonal contrast was low, and 
diatom abundance was uniformly high dur- 
ing most of the Gilbert and Gauss epochs, 
from 4.6 to 2.9 Ma. This trend is accentu- 
ated near the top of the Olduvai chron and 
punctuated by two strong cooling episodes 
in the late Pliocene at about 2.8 to 2.6 and 
at 1.8 to 1.6 Ma, coincident with the Plio- 
Pleistocene boundary (32) (Fig. 1E). After a 
major cooling in central Asia from 2.8 to 
2.6 Ma, the record implies that climates of 
the Baikal region warmed again from 2.5 to 
1.8 Ma. The major cooling episode from 1.8 
to 1.6 Ma coincides with the present strati- 
graphic position of the Pliocene-Pleisto- 
cene boundary, whereas the earlier episode 
(2.8 to 2.6 Ma) occurs during a time when 
many geological records indicate a major 
but reversible (not permanent) change in 
the climate system (32). The robust geo- 
chronology for the Lake Baikal record dern- 
onstrates that a maior cooling at the Plio- 

D 

Pleistocene boundary in central Eurasia set 
the stage for the further climatic deteriora- 

0 

tion during the Pleistocene. It has been 
suggested that, in other areas, the older late 
Pliocene cooling event marks the Plio- 
Pleistocene boundary when glacial ages 
were initiated and marine S160 values in- 
creased (6, 7, 33, 34). 

After the Plio-Pleistocene boundary, 
Northern Hemisphere glaciation increased 

during the Brunhes and late Matuyama 
chrons. We performed a spectral analysis 
(35) of the high-resolution biogenic silica 
record for the past 2.45 Ma in 400-ky in- 
tervals stepped every 100 ky to compare the 
periodicities in the Baikal record with 
changes observed in the marine S1'O record 
(Fig. 2). The Baikal and marine time series 
exhibited a similar progression in the spec- 
tral domain. From 2.45 to 1.6 Ma, low- 
period compollents ranging from 166 to 333 

ky are present, perhaps indicative of the 
400-ky eccentricity band, and the 100- and 
41-ky frequencies are weak. The 41-ky 
obliquity band becomes dominant from 1.8 
to 0.8 Ma with variance in the 100-ky 
eccentricity band increasing during the past 
0.8 Ma. Precession frequencies do not be- 
come visible in the Baikal spectrogram until 
the past 400 ky (Fig. 2) .  Lake Baikal is 
centered in the region of central Eurasia 
where energy balance modeling (3) has sug- 

A B C E F G 
Polarity 96-1 96.2 96.1 diatom 96-2 biogenic ODP 846 

time Scale inclination inclination abundance (%) Silica (%) Si80 

-90 0 90 -90 0 90 0 50 100 0 50 5.5 2.5 

Corr. age (Ma) 
0 3 

Fig. 1. (A) Reference geomagnetc polarlty tme scale (30, 43) correlated to the (B and C) ncl~nat~on 
proflles for BDP-96 Leg I I  holes 1 (B) and 2 (C) from the Balkal Drllllng Project aiier demagnetlzatlon at 
5 mT (D) Polarty reversal and event boundares provlde 13 age control polnts that reveal a constant and 
continuous sedimentaton rate of 4 cm ky- over the past 5 Ma (E) Dlatom abundance as determlned 
from smear slide analyses reveals pronounced alternating datom-rlch and datom-poor sedments (F) 
Blogenlc sllca content of sedlment determned by a procedure modlfled from (42) (G) The 6laO record 
for ODP ste 846 (30) for comparison with the datom abundance record of BDP-96 hole 1 (H) Mapplng 
functlon resulting from the Inverse correlation (corr ) of the blogenlc slca record of BDP-96 hole 2 to 
ODP slte 677 (6'a0) record as shown in Flg 2 (34) The sample resoluton of the BDP-96 paleoclmate 
proxles IS generally 2 cm, therefore, the resolution IS about 500 years 

2700 1 7 , 1 Frequency (cycleslkyr) I 
2 5 5 5 

2700 
50 

677 S'80  BDP-96-2 biogenic silica (%) 

Fig. 2. (A and B) The spectral evo- 
lution In the orbitally tuned oxygen 
isotope (6laO) record of ODP site 
677 as a proxy for global ice volume 
(34) as compared with (C and D) the 
evolutive power spectra for the 
2.45-Ma Bakal biogenic slica cli- 
mate proxy. The numbers at the top 
of (B) and (C) indlcate 1000-year 
bands as descrbed In the text. 
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gested that the seasonally dominated pre- 
cession signal should have its greatest im- 
pact on glacial-interglacial temperature 
changes. We thus expected that precession 
forcing at both the 23- and 19-ky bands 
would be much larger than at the 41-ky 
obliquity and 100-ky eccentricity bands 
(Fig. 2B). Eccentricity modulation of the 
precession signal thus appears to be an im- 
portant factor in the spectral evolution of 
climate in this interior continental region. 

To examine the 100-ky period in more 
detail, we made chronostratigraphic and 
spectral comparisons of the Baikal paleocli- 
mate record for the past 800 ky (Brunhes 
chron) with the predicted summer maxi- 
mum air temperature record for Siberia 
(65"N) from energy balance modeling (I), 
the 6'80 record of ODP site 677 (as a proxy 
for global ice volume) (34), and a compos- 
ite magnetic susceptibility record from Chi- 
nese loess sequences (1 2) (Fig. 3, A through 
H). With or without tuning to orbital fre- 
quencies, the Baikal biogenic silica record 
exhibits all of the marine isotopic stages 
and substages in terms of both the shape 
and relative intensity, much more so than 
in the less detailed record of magnetic sus- 
ceptibility from the Chinese loess sequenc- 
es. An especially impressive feature of the 
Baikal record for the past 400 ky is the 
abrupt changes resembling full glacial-like 
conditions in the substages of interglacial 
stages 5, 7, and 9. The evolutive time series 
(Fie. 2) shows that these events occur when 
theuexbected precession frequency of 23 ky 

Correlation of the Baikal record to the 
marine record (36) improves the relative 
variance of the 23-ky band in the power 
spectrogram. 

The observed response of the Baikal bio- 
genic silica proxy is different from that in 
the predicted summer temperature model, 
which shows a linear response to insolation 
for the Baikal region (Fig. 3, E and F). 
Because seasonal temDerature changes over 
land can be characteized as a fast response 
of the climate system (37) and because the 
biogenic silica response is also thought to be 
fast, because of its relation with the regional 
insolation-energy balance by way of the 
hydrodynamic system of Lake Baikal (16), 
we initially expected that the spectrograms 
of biogenic silica signals would show a lin- 
ear response to precession forcing. Such 
differences between modeled and observed 
geological responses, especially in the ec- 
centricity band (100 ky) and in the marine 
6180 record, are usually attributed to inter- 
nal feedback mechanisms in the ocean-at- 
mosphere-cryosphere system (38), trunca- 
tion (clipping) of the climate proxy signal 
(39, 40), or possibly model limitations (3). 
Instead of showing a clear linear response, 
the Baikal biogenic silica record shows a 
nonlinear resDonse. similar to the marine 
6l80 but no; qui;e as nonlinear as the 
response of the marine record because the 
23-ky variance is actually slightly higher in 
the continental interior record than in the 
marine 6'80 record. The relatively clipped 
nature of the Baikal biogenic silica record 

trations and because the lake's heat capac- 
ity is not large enough to account for the 
damping effect on the seasonal precession 
forcing, we speculate that part of the 100-ky 
modulation can be explained by an albedo 
feedback effect. Substantial glacial-intergla- 
cia1 albedo changes are expected in the 
Baikal region because of large-scale vegeta- 
tion changes. For example, steppe vegeta- 
tion replaced interglacial Boreal forests dur- 
ing glacial periods ( 1 7, 1 9, 4 1 ). Our results 
support the suggestion (40) that some trun- 
cation mechanism shifted the predicted 41- 
and 23-ky insolation forcing into the mod- 
ulating 100-ky eccentricity band. What the 
exact internal climate components in- 
volved in this interaction are is not clear at 
this time. 
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Biomass Collapse in Amazonian 
Forest Fragments 

William F. Laurance,* Susan G. Laurance, Leandro V. Ferreira, 
Judy M. Rankin-de Merona,? Claude Gascon, 

Thomas E. Lovejoy$ 

Rain forest fragments in central Amazonia were found to experience a dramatic loss of 
above-ground tree biomass that is not offset by recruitment of new trees. These losses 
were largest within 100 meters of fragment edges, where tree mortality is sharply 
increased by microclimatic changes and elevated wind turbulence. Permanent study 
plots within 100 meters of edges lost up to 36 percent of their biomass in the first 10 to 
17 years after fragmentation. Lianas (climbing woody vines) increased near edges but 
usually compensated for only a small fraction of the biomass lost as a result of increased 
tree mortality. 

Habi ta t  fragmentation affects the ecology 
of tropical rain forests in Inany ways, such as 
altering the diversity and composition of 
fragment biotas, and changing ecological 
processes like nutrient cycling and pollina- 
tion ( 1 ,  2) .  Recent evidence indicates that 
fragmentation also alters rain forest dynam- 
ics, causing sharp increases in the rates of 
tree mortality, damage, and canopy-gap for- 
mation, apparently as a result of microcli- 
matic changes and increased wind turbu- 
lence near forest edges (3). Here we dem- 
onstrate that in central Alnazonian rain 
forests, fragmentation is having an eclually 
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measurable effect on above-ground biomass. 
Given that more than 15 x lo6 ha of 
tropical forest are being cleared and frag- 
mented annually (41, a decline of biomass 
in forest remnants could be a significant 
source of greenhouse gases such as C 0 2 ,  
released upon decay. 

The study area, an experimentally frag- 
mented landscape spanning about 20 km by 
50 km, is located 80 km north of Manaus, 
Brazil (2'30'S, 60°W), at an elevation of 
100 to 150 In. Between 1980 and 1986 a 
series of replicate forest patches of 1, 10, 
and 100 ha in area were isolated by clearing 
and often burning the surrounding vegeta- 
tion to create cattle pastures. A total of 39 
permanent, square, 1-ha study plots were 
established in four 1-ha fragments, three 
10-ha fragments, and two 100-ha fragments, 
and 27 identical control plots were located 
in nearby continuous rain forest. The plots 
in the fragments were stratified so that edge 
and interior areas were both sampled. More 
than 1000 tree species have been identified 
in the s t ~ ~ d y  plots (5). 
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