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Lake Baikal Record of Continental Climate
Response to Orbital Insolation During the
Past 5 Million Years
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The sedimentary record of biogenic silica from Lake Baikal in south-central Siberia
suggests that this region of central Asia was impacted by two major cooling episodes
at 2.8 to 2.6 and 1.8 to 1.6 million years ago. The spectral evolution of this continental
interior site parallels the evolutionary frequency spectra for various marine oxygen
isotope records. In the Baikal record, the 41,000-year obliquity cycle is particularly strong
from 1.8 to 0.8 million years ago; variance in the 100,000-year eccentricity band increases
during the past 0.8 million years. The expected precession frequency of 23,000 years is
highest during the past 400,000 years. The modulation of the predicted 23,000- and
41,000-year insolation forcing by the 100,000- and 400,000-year eccentricity bands
indicates that the transfer of variance from the precession and obliquity frequencies to
the eccentricity part of the spectrum occurred in the Eurasian continental interior, as well

as in tropical and high-latitude ocean sites.

Simulations of the response of Earth’s cli-
mate system to changes in both external
(1-3) and internal boundary conditions (4—
9) have led to new understanding of the
evolution of the Asian monsoonal system
and African and Arabian continental arid-
ity and moisture patterns through time. The
general pattern of the Asian climate re-
sponse for the past 30 thousand years (ky) is
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fairly well known from lake piston cores
(10), and for the past 2.6 million years
(Ma), it is known from the Chinese loess
sections (11, 12). However, long, high-res-
olution sedimentary sections with multiple
climate proxies have not been available for
the high-latitude, continental interior re-
gions of central Eurasia. Energy balance
modeling (3) has suggested that the tem-
perature responses of this region may have
been as high as 14°C during glacial-inter-
glacial fluctuations of the past 800 ky.
These model projections are based on a
linear response to orbitally induced varia-
tions in seasonal insolation due to the 23-ky
precession cycle with some contribution
from the 41-ky obliquity cycle according to
the Milankovitch theory (13). The recent
recovery of sedimentary records for the past
5 Ma from Lake Baikal, in south-central
Siberia (14), provided an opportunity to
test climate model projections on the re-
sponse of central Eurasian watersheds and
ecosystems to external orbital forcing and
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internal climate system feedbacks, as well as
to provide a stratotype for continental pa-
leoclimate studies.

Lake Baikal is the world’s largest and
deepest freshwater lake (15). Because Lake
Baikal is located in the continental interior,
its hydrodynamic system and biological pro-
ductivity are sensitive to solar energy vari-
ations (16), which in turn are accurately
recorded through the flux of biogenic silica
and diatom abundance to the bottom sedi-
ments (17-20). To develop an understand-
ing of Baikal’s response to paleoclimate pro-
cesses, we adopted a strategy similar to that
used in the study of marine records by
studying Baikal cores with multiple climate
proxies (21-23) and detailed accelerator
mass spectrometry radiocarbon dates for the
past 25 ky (24, 25). Spectral analysis of
records spanning the past 250 ky (22, 25)
has provided evidence that orbital frequen-
cies are embedded in and resolvable from
the Baikal record (26).

From January to April 1996, a Russian
scientific drilling team successfully recov-
ered a sedimentary record spanning the past
5 Ma from a deep-water topographic high
known as the Academician Ridge (27). In
Baikal Drilling Program 1996 (BDP-96)
hole 1, 93% of the core was recovered in the
upper 119 m. Because rotary drilling was
used to complete drilling to a total subbot-
tom depth of 300 m, coring recovery aver-
aged 61% from 119 to 192 m subbottom (for
technical reasons, only logging was done
between 192 and 300 m). In hole 2, 99% of
the core was recovered with an advanced
hydraulic piston corer (APC) to a subbot-
tom depth of 100 m. Comparison of detailed
inclination profiles for holes 1 and 2 with a
reference geomagnetic polarity time scale for
the Neogene (Fig. 1, A through C) (28-30)
reveals that the basal age is about 5 Ma;
robust reversal boundaries provide 13 age
control points. A plot of the age-depth re-
lation based on these geomagnetic polarity
boundaries shows that the hemipelagic ac-
cumulation rate is a nearly constant 4 cm
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ky~! over the past 5 Ma and that there are
no major hiatuses or disconformities (Fig.
1D). Diatom-rich and diatom-poor sedi-
ments (Fig. 1E) alternate in the core, which
is indicative of the restructuring of the
Baikal ecosystem as a result of glacial-inter-
glacial climate changes during the late Pleis-
tocene (17-20). Previous work has shown
that the diatom abundance and biogenic
silica records for the BDP-96 cores can be
used to reveal the basic structure of the
Plio-Pleistocene  glacial-interglacial cycles
for south-central Siberia over the past 5 Ma
(Fig. 1, E and F) as compared with the
evolution of global ice volume for the past 5
Ma from Ocean Drilling Program (ODP)
site 846 (30) (Fig. 1G). A comparison of the
polarity age model for the past 2.45 Ma with
that derived from correlation of the BDP-96
biogenic silica record with the ODP site 846
3180 record (Fig. 1H) shows that the corre-
lation only shifts the BDP-96 record a few
thousand years or less and confirms that the
sedimentation rate is uniform at this site and
that there are no signs of disconformities.

A general cooling trend of the Northern
Hemisphere can be "seen in the BDP-96
diatom record (Fig. 1E). For example, gla-
cial clays in the upper 70 m of the core (the
past 1.6 to 1.7 Ma) are nearly barren of
diatoms (0 to 5%), whereas clays between
depths of 115 and 192 m have diatom con-
tents ranging from 5 to 15% (31). Climates
were warm, seasonal contrast was low, and
diatom abundance was uniformly high dur-
ing most of the Gilbert and Gauss epochs,
from 4.6 to 2.9 Ma. This trend is accentu-
ated near the top of the Olduvai chron and
punctuated by two strong: cooling episodes
in the late Pliocene at about 2.8 to 2.6 and
at 1.8 to 1.6 Ma, coincident with the Plio-
Pleistocene boundary (32) (Fig. 1E). After a
major cooling in central Asia from 2.8 to
2.6 Ma, the record implies that climates of
the Baikal region warmed again from 2.5 to
1.8 Ma. The major cooling episode from 1.8
to 1.6 Ma coincides with the present strati-
graphic position of the Pliocene-Pleisto-
cene boundary, whereas the earlier episode
(2.8 to 2.6 Ma) occurs during a time when
many geological records indicate a major
but reversible (not permanent) change in
the climate system (32). The robust geo-
chronology for the Lake Baikal record dem-
onstrates that a major cooling at the Plio-
Pleistocene boundary in central Eurasia set
the stage for the further climatic deteriora-
tion during the Pleistocene. It has been
suggested that, in other areas, the older late
Pliocene cooling event marks the Plio-
Pleistocene boundary when glacial ages
were initiated and marine 8'80 values in-
creased (6, 7, 33, 34).

After the Plio-Pleistocene boundary,
Northern Hemisphere glaciation increased
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during the Brunhes and late Matuyama
chrons. We performed a spectral analysis
(35) of the high-resolution biogenic silica
record for the past 2.45 Ma in 400-ky in-
tervals stepped every 100 ky to compare the
periodicities in the Baikal record with
changes observed in the marine 8'80 record
(Fig. 2). The Baikal and marine time series
exhibited a similar progression in the spec-
tral domain. From 2.45 to 1.6 Ma, low-
period components ranging from 166 to 333
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ky are present, perhaps indicative of the
400-ky eccentricity band, and the 100- and
41-ky frequencies are weak. The 41-ky
obliquity band becomes dominant from 1.8
to 0.8 Ma with variance in the 100-ky
eccentricity band increasing during the past
0.8 Ma. Precession frequencies do not be-
come visible in the Baikal spectrogram until
the past 400 ky (Fig. 2). Lake Baikal is
centered in the region of central Eurasia
where energy balance modeling (3) has sug-
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Fig. 1. (A) Reference geomagnetic polarity time scale (30, 43) correlated to the (B and C) inclination
profiles for BDP-96 Leg Il holes 1 (B) and 2 (C) from the Baikal Driling Project after demagnetization at
5mT. (D) Polarity reversal and event boundaries provide 13 age control points that reveal a constant and
continuous sedimentation rate of 4 cm ky~" over the past 5 Ma. (E) Diatom abundance as determined
from smear slide analyses reveals pronounced alternating diatom-rich and diatom-poor sediments. (F)
Biogenic silica content of sediment determined by a procedure modified from (42). (G) The 8'80 record
for ODP site 846 (30) for comparison with the diatom abundance record of BDP-96 hole 1. (H) Mapping
function resulting from the inverse correlation (corr.) of the biogenic silica record of BDP-96 hole 2 to
ODP site 677 (8'80) record as shown in Fig. 2 (34). The sample resolution of the BDP-96 paleoclimate
proxies is generally 2 cm; therefore, the resolution is about 500 years.
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gested that the seasonally dominated pre-
cession signal should have its greatest im-
pact on glacial-interglacial temperature
changes. We thus expected that precession
forcing at both the 23- and 19-ky bands
would be much larger than at the 41-ky
obliquity and 100-ky eccentricity bands
(Fig. 2B). Eccentricity modulation of the
precession signal thus appears to be an im-
portant factor in the spectral evolution of
climate in this interior continental region.

To examine the 100-ky period in more
detail, we made chronostratigraphic and
spectral comparisons of the Baikal paleocli-
mate record for the past 800 ky (Brunhes
chron) with the predicted summer maxi-
mum air temperature record for Siberia
(65°N) from energy balance modeling (1),
the 880 record of ODP site 677 (as a proxy
for global ice volume) (34), and a compos-
ite magnetic susceptibility record from Chi-
nese loess sequences (12) (Fig. 3, A through
H). With or without tuning to orbital fre-
quencies, the Baikal biogenic silica record
exhibits all of the marine isotopic stages
and substages in terms of both the shape
and relative intensity, much more so than
in the less detailed record of magnetic sus-
ceptibility from the Chinese loess sequenc-
es. An especially impressive feature of the
Baikal record for the past 400 ky is the
abrupt changes resembling full glacial-like
conditions in the substages of interglacial
stages 5, 7, and 9. The evolutive time series
(Fig. 2) shows that these events occur when
the expected precession frequency of 23 ky
is most prominent. Further spectral analysis
comparison of the Brunhes chron portions
of the various climate records (Fig. 3, E to
H) shows that the relative variance in the
continental BDP-96 and marine ODP site
677 records is similar (Fig. 3, E and G).

Correlation of the Baikal record to the
marine record (36) improves the relative
variance of the 23-ky band in the power
spectrogram.

The observed response of the Baikal bio-
genic silica proxy is different from that in
the predicted summer temperature model,
which shows a linear response to insolation
for the Baikal region (Fig. 3, E and F).
Because seasonal temperature changes over
land can be characterized as a fast response
of the climate system (37) and because the
biogenic silica response is also thought to be
fast, because of its relation with the regional
insolation-energy balance by way of the
hydrodynamic system of Lake Baikal (16),
we initially expected that the spectrograms
of biogenic silica signals would show a lin-
ear response to precession forcing. Such
differences between modeled and observed
geological responses, especially in the ec-
centricity band (100 ky) and in the marine
3180 record, are usually attributed to inter-
nal feedback mechanisms in the ocean-at-
mosphere-cryosphere system (38), trunca-
tion (clipping) of the climate proxy signal
(39, 40), or possibly model limitations (3).
Instead of showing a clear linear response,
the Baikal biogenic silica record shows a
nonlinear response, similar to the marine
380 but not quite as nonlinear as the
response of the marine record because the
23-ky variance is actually slightly higher in
the continental interior record than in the
marine 8'%0 record. The relatively clipped
nature of the Baikal biogenic silica record
does not preclude the possibility that some
climate feedback plays a role in producing
this nonlinear response. Because Lake
Baikal’s biological productivity is indepen-
dent of ice sheet size or changes in ocean
circulation and atmospheric CO, concen-

trations and because the lake’s heat capac-
ity is not large enough to account for the
damping effect on the seasonal precession
forcing, we speculate that part of the 100-ky
modulation can be explained by an albedo
feedback effect. Substantial glacial-intergla-
cial albedo changes are expected in the
Baikal region because of large-scale vegeta-
tion changes. For example, steppe vegeta-
tion replaced interglacial Boreal forests dur-
ing glacial periods (17, 19, 41). Our results
support the suggestion (40) that some trun-
cation mechanism shifted the predicted 41-
and 23-ky insolation forcing into the mod-
ulating 100-ky eccentricity band. What the
exact internal climate components in-
volved in this interaction are is not clear at
this time.
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Biomass Collapse in Amazonian
Forest Fragments

William F. Laurance,* Susan G. Laurance, Leandro V. Ferreira,
Judy M. Rankin-de Merona,f Claude Gascon,
Thomas E. Lovejoyi:

Rain forest fragments in central Amazonia were found to experience a dramatic loss of
above-ground tree biomass that is not offset by recruitment of new trees. These losses
were largest within 100 meters of fragment edges, where tree mortality is sharply
increased by microclimatic changes and elevated wind turbulence. Permanent study
plots within 100 meters of edges lost up to 36 percent of their biomass in the first 10 to
17 years after fragmentation. Lianas (climbing woody vines) increased near edges but
usually compensated for only a small fraction of the biomass lost as a result of increased

tree mortality.

Habica fragmentation affects the ecology
of tropical rain forests in many ways, such as
altering the diversity and composition of
fragment biotas, and changing ecological
processes like nutrient cycling and pollina-
tion (I, 2). Recent evidence indicates that
fragmentation also alters rain forest dynam-
ics, causing sharp increases in the rates of
tree mortality, damage, and canopy-gap for-
mation, apparently as a result of microcli-
matic changes and increased wind turbu-
lence near forest edges (3). Here we dem-
onstrate that in central Amazonian rain
forests, fragmentation is having an equally
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measurable effect on above-ground biomass.
Given that more than 15 X 10° ha of
tropical forest are being cleared and frag-
mented annually (4), a decline of biomass
in forest remnants could be a significant
source of greenhouse gases such as CO,,
released upon decay.

The study area, an experimentally frag-
mented landscape spanning about 20 km by
50 km, is located 80 km north of Manaus,
Brazil (2°30’S, 60°W), at an elevation of
100 to 150 m. Between 1980 and 1986 a
series of replicate forest patches of 1, 10,
and 100 ha in area were isolated by clearing
and often burning the surrounding vegeta-
tion to create cattle pastures. A total of 39
permanent, square, 1-ha study plots were
established in four 1-ha fragments, three
10-ha fragments, and two 100-ha fragments,
and 27 identical control plots were located
in nearby continuous rain forest. The plots
in the fragments were stratified so that edge
and interior areas were both sampled. More
than 1000 tree species have been identified
in the study plots (5).
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