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Transgenic Knockout Mice with 
Exclusively Human Sickle Hemoglobin and - 

Sickle Cell Disease 
Chris . Paszty,* . Catherine M. Brion, Elizabeth Manci, 

' H. Ewa Witkowska, Mary E. Stevens, 
Narla Mohandas, Edward M. Rubin 

To create mice expressing exclusively human sickle hemoglobin (HbS), transgenic mice 
expressing human a-, y-, and Ps-globin were generated and bred with knockout mice 
that had deletions of the murine a- and P-globin genes. These sickle cell mice have the 
major features (irreversibly sickled red cells, anemia, multiorgan pathology) found in 
humans with sickle cell disease and, as such, represent a useful in vivo system to 
accelerate the development of improved therapies for this common genetic disease. 

A single base pair chinge in codon 6 of 
the p-globin gene causes sickle cell ane- 
mia in individuals who are homozygous for 
the mutation (1). Sickle hemoglobin [HbS 
(azPSz)] undergoes polymerization upon 
deoxygenation, thereby distorting erythro- 
cytes into a variety of sickled shapes, dam- 
aging the erythrocyte membrane, and ul- 
timately causing anemia, ischemia, infarc- 
tion, and progressive organ dysfunction. 
Despite the impressive body of knowledge 
that has accumulated (2).  manv asDects of ~ , ,  , . 
sickle cell disease are still poorly under- 
stood and treatment options remain lim- 
ited. Because of the inhibitory effects of 
mouse a -  and P-globin on sickling, trans- 
genic mice expressing various sickle he- 
moglobins (HbS, HbSAD, HbS-Antilles) 
develop almost none of the clinical man- 
ifestations of sickle cell disease ( 3 ) .  Some . , 

sickle cell disease pathology has been re- 
ported in transgenic mice bred to produce 
higher concentrations of the "supersick- 
ling" hemoglobins (HbSAD and HbS-An- 
tilles) (4); however, these animals still 
lack important features that are commonly 
found in humans with sickle cell disease 
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(5). T o  overcome these limitations, we 
have created mice that no  longer express 
mouse a -  and P-globin; instead, they ex- 
press exclusively human a -  and ps-globin. 

Three fragments of human DNA were 
coinjected into fertilized mouse eggs to 
generate transgenic founders expressing 
human a -  and Ps-globin (6). Because y-  
globin has antisickling properties, we in- 
cluded the Gy- and Ay-globin genes to 
decrease the likelihood that erythrocytes 
would sickle during gestation and cause 
fetal death. In the particular transgenic 

Mouse 
embryonic globlns 

W i H - t y p e k , "  fetus 

Mouse 

Transgenic a embryonic globins 

fetus r----7 

T a n s e n i ~  adult 

line that was generated [Tg(Hu- 
miniLCRalGyAySPS)], Gy- and Ay-globin 
are expressed during the embryonic and 
fetal stages of development and not in 
adult mice (Fig. 1A)  (7). Through succes- 
sive rounds of breeding with knockout " 

mice heterozygous for deletions of the mu- 
rine a -  and p-globin genes, Hbao//+ 
Hbbo//+ (8, 9), mice homozygous for the 
a- and P-globin deletions and containing 
the sickle transgene were generated- 
Tg (Hu-min~LCRa lGyAyS~S)  HbaO//HbaO 
HbbO//HbbO, hereafter called sickle cell 
mice ( 10). Manv of these mice turned ~ u r u l e  
and died a few hours after birth; theirLdeath 
was apparently a result of hypoxia brought 
about by respiratory distress. Because y-glo- 
bin concentrations are relatively low [range, 
4 to 26% (y/y+PS)] in newborn sickle cell 
mice (Fig. 1B) compared with newborn hu- 
mans, it is likely that these deaths are caused 
by the sickling of erythrocytes during the 
critical period just after birth when the lungs 
must begin the task of supplying oxygen. 
Sickle cell mice that survived this earlv crit- 
ical period were able to reach adulihood 
(manv are now more than 7 months old) . , 
with normal appearance, activity, and fertil- 
ity (11). Erythrocytes in adult sickle cell 
mlce contain exclusively human a -  and pS- 
globin (Fig. 1B). There is an excess of a -  
globin chain synthesis (alpS, 1.26 t 0.02; 

Sickle cell 

aduL 

Fig. 1. Globin chains in transgenic and sickle cell 
mice. (A) HPLC profiles showing globin-chain 
composition of erythrocytesfrom wild-type (+//+) 
and transgenic 12.5-day gestation fetuses and 
from adult transgenic mice. (B) Globin-chain com- 
position of erythrocytes from newborn and adult 
sickle cell mice. 
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n = 5) (12), which indicates that these 
sickle cell mice are slightly P-thalassemic. 

Common findings in humans with sick- 
le cell anemia include irreversibly sickled 
cells (ISCs), anemia, and increased rigid- 
ity of erythrocytes. Sickle cell mice are 
anemic, with average hematocrits only 
65% of normal, and have markedly elevat- 
ed reticulocyte counts (Table 1). ISCs, 
indicative of repeated cycles of in vivo 
sickling and unsickling, were observed at a 
frequency of 5 to 10% in oxygenated sickle 
cell mouse blood (Fig. 2A). Upon deoxy- 
genation in vitro (13), classically sickled 
cells formed at high frequency. Erythro- 
cytes from sickle cell mice have signifi- 
cantly decreased osmotic fragility and in- 
creased dynamic rigidity (Fig. 2B) as mea- 
sured by osmotic gradient ektacytometry 
(14). The various hematologic and eryth- 
rocytic perturbations that exist in these 
sickle cell mice closely parallel those ob- 
served in humans with sickle cell anemia 
(2). 

The final and most serious manifesta- 
tion of sickle cell disease in humans is 
damage to multiple organs. In sickle cell 
mice, kidney and heart weights increased 
2-fold, and spleen weight increased 13- 
fold compared with wild-type controls 
(15). Long-term increases in cardiac out- 
put and splenic erythropoiesis, both in 
response to the chronic anemia that exists 
in these mice, are likely to be responsible 
for the observed increases in heart and 
spleen weights. Histologic analysis (16) 
revealed tissue damage in multiple organs 
(Fig. 3): kidney (fibrosis, atrophy, infarcts, 
cysts; Fig. 3B), lung (vascular congestion; 

Fig. 2. Morphology and cellular characteristics of 
erythrocytes from adult sickle cell mice. (A) Oxy- 
genated sickle cell mouse blood showing lSCs 
(elongated cells). (B) Osmotic deformability pro- 
files of erythrocytes from wild-type (stippled curve) 
and sickle cell (solid curve) mice. 

Fig. 3D), liver (multifocal ischemic in- 
farcts; Fig. 3, E and F), and spleen (con- 
gested sinusoidal channels). Increased 
iron deposits were found in liver (Kupffer 
cells) and kidney (tubular epithelium). 
The extent and nature of the congestion, 
atrophy, fibrosis, and infarct found in or- 
gans of these sickle cell mice is very sim- 

ilar to what has been reported in humans 
with sickle cell disease (1 7). 

We have extensively reengineered the 
murine globin system to create mice that 
express exclusively human sickle hemo- 
globin and that faithfully recapitulate the 
major genetic, hematologic, and his- 
topathologic features of humans with sick- 

Table 1. Hematologic values for adult sickle cell and wild-type mice. Hct, hematocrit; MCH, mean 
corpuscular hemoglobin content; MCV, mean corpuscular volume; MCHC, mean corpuscular hemo- 
globin concentration; HDW, standard deviation of hemoglobin concentration histogram distribution 
width. MCH, MCV, MCHC, and HDW were determined with an automated hematology analyzer (H'3 
System, Bayer Diagnostics, Tarrytown, New York). Animals were 3 to 7 months of age. Values are 
shown as mean 5 standard error of the mean (n = 7 in each group). Means for each parameter were 
significantly different for sickle cell and wild-type mice (P < 0.006, t test). 

Hct (%) Reticulocytes MCHC 
MCH (pg) MCV (fl) (g/dl) 

HDW 
(%) (g/dl) 

Wild type 43.6 2 1.2 3.4 2 0.5 13.2 5 0.3 40.3 5 0.2 33.8 2 0.7 4.2 2 0.2 
Sicklecell 28.722.5 26.822.2 8.320.4 34.021.1 26.520.7 8.320.1 

Fig. 3. Sickle cell mouse organ histopathology. (A) Wild-type ki- _,I (cortex). (B) Sick. .. jney 
(cortical microinfarct and cysts). (C) Wild-type lung parenchyma. (D) Sickle cell lung parenchyma 
(congested capillary bed). (E) Sickle cell liver (microinfarct surrounded by healthy tissue). (F) Higher 
magnification showing coagulative necrosis with loss of nuclear detail in hepatocytes. (G) Sickled 
erythrocytes in hepatic vascular channels. Scale bars = 15 pm; stained with hematoxylin and eosin. 
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le cell anemia. In contrast to the limited 
studies that can be performed in humans, 
these animals provide an  opportunity for 
rapidly exploring an  expanded range of 
inquiry in an  in vivo setting. As such, 
these sickle cell mice are likely to play an  
important role in furthering our under- 
standing of the pathophysiology of sickle 
cell disease and in developing improved 
therapies for treating the more than 
100,000 individuals born each year with 
this genetic disease. 

Note added in broof: With a similar aD- 
a ,  

proach, we hqve also created mice that 
express exclusively normal human hemo- 
globin (HbA). 
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effective of the G7. Second, we argue that it 
is incorrect to relate the citation ~e r fo r -  
mance of the national science system only 
to government expenditure, because private 
and overseas funders have made an  increas- 
ingly large contribution to public domain 
U.K. science in recent years. 

Mav estimates (1)  return on invest- 
ment for a single year (1991) based on  the 
yearly average number of citations over 
the ~ e r i o d  1981-94 (4). However, expen- 
diture in 1991 will have little effect on  
citations before about 1997 because there 
is commonly a +year lag before papers 
emerge from the funded research and a t  
least a further 2-vear ~ e r i o d  before the 
citation peak is ;ached. The  preferred 
analysis would be to compare expenditure 
figures for each year with citations 
achieved (say, 4 to 6 years later) and to 
track this over time. Because May takes 

878 SCIENCE VOL. 278 31 OCTOBER 1997 www.sciencemag.org 




