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IKB Kinase-P: NF-KB Activation and Complex 
Formation with IKB Kinase-a and NIK 

John D. Woronicz, Xiong Gao, Zhaodan Cao, Mike Rothe, 
David V. Goeddel* 

Activation of the transcription factor nuclear factor kappa B (NF-KB) by inflammatory 
cytokines requires the successive action of NF-KB-inducing kinase (NIK) and IKB ki- 
nase-a (IKK-a). A widely expressed protein kinase was identified that is 52 percent 
identical to IKK-a. IKB kinase-p (IKK-p) activated NF-KB when overexpressed and 
phosphorylated serine residues 32 and 36 of IKB-a and serines 19 and 23 of IKB-P. The 
activity of IKK-p was stimulated by tumor necrosis factor and interleukin-1 treatment. 
IKK-a and IKK-p formed heterodimers that interacted with NIK. Overexpression of a 
catalytically inactive form of IKK-p blocked cytokine-induced NF-KB activation. Thus, an 
active IKB kinase complex may require three distinct protein kinases. 

Transcriptional activation of inflammatory 
response genes by tumor necrosls factor 
(TNF), interleukin-1 (IL-1 ), and other ex- 
ternal stimuli is mediated by the transcrip- 
tion factor NF-KB (1, 2). Normally, NF-KB 
is held in  an inactive state in  the cytoplasm 
by IKB inhibitory proteins. When  cells are 
treated with TNF or IL-1, protein kinase 
cascades are activated that lead to uhosuho- . L 

rylation of IKB proteins on  two specific 
serine residues ( 1. 2 ) .  This signal-induced . ,  , u 

phosphorylation targets IKB for ubiquitina- 
tion and proteosome-mediated degradation, 
allowing nuclear translocation of NF-KB (2). 

Several steus of the TNF- and IL-l-acti- 
vated signaling pathways leading to IKB phos- 
phorylation have now been elucidated (3- 
10). Both pathways merge at the level of the 
protein kinase NIK (NF-KB-inducing kinase) 
(1 0).  T h e  molecular mechanisms by which 
NIK becomes activated are not yet under- 
stood. However, the protein kinase CHUK 
is a downstream target of NIK (1 1) that di- 
rectly associates w i g  IKB-a and sp'ecifically 
phosphorylates it on  serines 32 and 36 (1 1, 
12). These results have led to the redesigna- 
tion of CHUK as IKB kinase-a (IKK-a). 

IKK-a does not phosphoryla;e the ;wo 
serines required for degradation of a second 
member of the IKB family, IKB-P, with 
equal efficiency; it has a marked preference 
for serine 23 over serine 19 (1 1 ). This find- 
ing indicates that another kinase might be 
responsible for IKB-P phosphorylation. Fur- 
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thermore, mapping of the gene encoding 
CHUK revealed the presence of a CHUK- 
related sequence in the mouse genome (1 3) .  
T o  search for IKK-a-related kinases, we 
screened the National Center for Biotech- 
nology Information DNA database and 
identified a n  expressed sequence tag (EST) 
cDNA clone predicted to  encode a poly- 
peptide 57% identical to amino acids 624 to 
658 of IKK-a (14). Full-length human 
cDNAs corresponding to the EST sequence 
were isolated from a Jurkat T cell cDNA 
library and found to encode a 756-amino 
acid protein very similar to  IKK-a, which 
we designate IKK-P (Fig. 1). Overall, the 
sequences of IKK-a and IKK-P are 52% 
identical, with the NH,-terminal kinase do- 
mains sharing 64% identity and the COOH- 
terminal regions, which contain leucine zip- 
per and helix-loop-helix domains, having 
44% sequence identity. A n  IKK-P mRNA of 
-3.8 kb was detected by Northern (RNA) 
blot analysis in all tissues examined (1 5). 

T o  determine whether IKK-P might 
have a role in  NF-KB activation, we com- 
pared the ability of IKK-a and IKK-P to 
activate a n  NF-KB-dependent reporter 
gene in transiently transfected 293 cells 
(1 6). Overexpression of IKK-P gave consis- 
tently greater activation of the NF-KB re- 
porter than did IKK-a at  equivalent expres- 
sion levels (Fig. 2A). A catalytically inac- 
tive mutant of IKK-P, IKK-P(K44A), failed 
to activate the NF-KB-dependent reporter 
gene when overexpressed and inhibited 
both TNF- and IL-1-induced NF-KB acti- 
vation in a dose-dependent manner (Fig. 
2B). In constrast, overexpression of wild- 
type IKK-P further enhanced TNF- and 
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IL-l-induced N F - K B activation (15). 
IKK-a directly phosphorylates I KB-a 

on serine residues 32 and 36, and this 
activity is enhanced by NIK stimulation 
(12). In similar in vitro phosphorylation 
assays (11), IKK-p was at least 20 times as 
active as IKK-a in phosphorylating bacte-
rially produced IKB-CX (Fig. 3A; compare 
lanes 1 and 3). IKK-p phosphorylated 
IKB-CX on serines 32 and 36 with approxi­
mately equal efficiency (Fig. 3B). We also 
evaluated the ability of IKK-(3 to phos-
phorylate wild-type and mutant versions 
of the inhibitory protein IKB-(3. IKK-P 
specifically phosphorylated IKB-P on its 
inducible phosphorylation sites, serine res­
idues 19 and 23. IKK-p phosphorylated 
both sites equally well (Fig. 3B), in con­
trast to IKK-a, which preferentially phos­
phorylates serine 23 ( I I ) . 

The activity of IKK-a is enhanced in 
cells that also overexpress NIK (11), but 
NIK-activated IKK-a is still somewhat less 
active than IKK-p expressed alone (17). 
NIK coexpression also enhanced IKK-p 
activity (Fig. 3A) but to a lesser extent 
than it activated IKK-a (11). When 
IKK-P was coexpressed with IKK-a (Fig. 
3A, lane 7), or with both NIK and IKK-a 
(lane 8), there was no obvious increase in 
activity above that seen for IKK-p alone 
(lane 5). 

The I KB-a-directed kinase activity of 
IKK-a is stimulated by TNF or IL-l treatment 
(12). To determine whether the activity of 
IKK-P is also enhanced by inflammatory cy­
tokines, we transiently expressed Flag-tagged 
IKK-P in HeLa cells. Thirty-six hours later, 
the cells were treated for 8 min with TNF or 
IL-l, and anti-Flag immunoprecipitates were 
examined for IKB kinase activity. Both TNF 
and IL-l treatment resulted in increased phos­
phorylation of exogenous IjcB-a (Fig. 3C), 
demonstrating that IKK-(3 is a cytokine-ac-
tivated IKB kinase. 

Because IKK-a directly interacts with 
both NIK and I KB-a (11), we examined 
whether IKK-(3 also associates with these 
two proteins in cotransfection, coimmuno-
precipitation experiments (18). NIK associ­
ated with IKK-p, although this interaction 
was weaker than NIK's interaction with 
IKK-a (Fig. 4A). To measure association 
with I KB-a, Flag-IKK-p was expressed with 
wild-type or mutant I KB-a in 293 cells, and 
anti-Flag immunoprecipitates were analyzed 
for coprecipitating I KB-a by immunoblot-
ting. No interaction was detected between 
wild-type IKK-p and iKB-a when these two 
proteins were coexpressed. However, IKK-p 
interacted weakly with an I KB-a mutant in 
which serines 32 and 36 were replaced by 
alanine (Fig. 4B). We also performed these 
experiments in the presence of coexpressed 
p65 and p50 subunits of NF-KB, which sta­

bilize overexpressed I KB-a (11, 19) (Fig. 
4B). This made it possible to detect the 
interaction of IKK-p with I KB-a and im­
proved the interaction of IKK-(3 with IKB-
a(S32,36A) (Fig- 4B). Even stronger interac­
tions were observed between the catalytical-
ly inactive IKK-p(K44A) mutant and I KB-a. 
Overall, the behavior of IKK-p in these as­
says is similar to that of IKK-a, whose affin­
ity for I KB-a is reduced after phosphoryl­
ation of IKB-a on serines 32 and 36 (11). 
Coexpression of IKK-p and I KB-a resulted 

in the detection of a more slowly migrating, 
phosphorylated I KB-a species in immuno-
blot analysis of total cell extracts (Fig. 4B). 
In similar experiments performed with IKK-
a, this was only observed if NIK was also 
expressed (11). 

The COOH-terminal regions of both 
IKK-a and IKK-p contain putative helix-
loop-helix and leucine zipper motifs (20) (Fig. 
1). Because such domains often participate in 
protein oligomerization, we examined wheth­
er these two kinases could form dimers. Ex-
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Fig. 1. Sequence alignment of human IKK-p and IKK-a (23). An optimized alignment of the protein 
sequences of human IKK-p and IKK-a is shown. Identical amino acids are boxed. Brackets delineate the 
boundaries of the kinase domains. Asterisks identify a putative leucine zipper region, and two amphi-
pathic helices of a helix-loop-helix domain are underlined. The IKK-p nucleotide sequence has been 
deposited in GenBank (accession number AF029684). 

Fig. 2. Comparison of IKK-a and IKK-p in NF-KB acti­
vation. (A) Effect of IKK-a and IKK-p overexpression on 
NF-KB-dependent reporter gene activity in 293 cells. 
Two hundred ninety-three cells were transiently co-
transfected (16) with an E-selectin-luciferase reporter 
gene plasmid and expression vectors encoding Myc-
tagged IKK-a or IKK-p, or with a vector control. Lucif-
erase activities were determined and normalized on the 
basis of p-galactosidase (p-Gal) expression from co-
transfected pRSV-p-Gal (1 mg). The values shown are 
averages (mean ± SEM) of one representative experi­
ment (out of five) in which each transfection was per­
formed in duplicate. The amounts of IKK-a and IKK-p 
expressed in each sample were determined by immu-
noblotting with polyclonal antibodies to Myc (anti-Myc; 
lower panel). (B) Effect of IKK-a(K44A) and IKK-p(K44A) 

expression on TNF- and IL-1-induced reporter gene 
activity in 293 cells; 293 and 293/IL-1R1 cells (8) were 
transiently cotransfected with an E-selectin-luciferase 
reporter gene plasmid and a vector control or with 
IKK-a(K44A) or IKK-p(K44A) expression vectors as indicat­
ed. Thirty to 36 hours after transfection, cells were 
either left untreated (open bars) or were stimulated for 6 
hours with TNF (100 ng/ml) (solid bars) or IL-1 (10 
ng/ml) (hatched bars); 293 cells were stimulated with 
TNF, and 293/IL-1R1 cells were stimulated with IL-1. 
Luciferase activities were determined and normalized 

Blot: anti-Myc 

B >-50 

o 40 

30-

73 20 

10 

D Unstimulated 
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on the basis of p-Gal expression. Values shown are the averages (mean ± SEM) of duplicate samples 
from one representative experiment. 
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pression vectors encoding various combina- 
tions of Flag- and Myc-epitope-tagged pro- 
teins were transfected into 293 cells, and co- 
immunoprecipitation analyses were done 
(18). Both homo- and heterodimers were de- 
tected, with the a/P heterodimer and the a/a 
homodimer forming more readily than the 
p/P homodimer (Fig. 5A). When Flag-tagged 
IKK-a was coexpressed with both Myc-IKK-a 
and Myc-IKK-P, anti-Flag immunoprecipi- 
tates preferentially contained Myc-IKK-P. 
Likewise, Flag-IKK-P bound more readily to 
Myc-IKK-a than to Myc-IKK-P (Fig. 5A). 
Thus, IKK-a and IKK-P may naturally exist 
in a heterodimeric state. 

We raised antibodies to  peptides from 
the two kinases and tested for association of 
the endogenous kinases in untransfected 
293 cells (21 ). Protein immunoblot analysis 
of IKK-P immunoprecipitates showed the 
presence of IKK-a, demonstrating that het- 
erodimers of IKK-a  and IKK-P exist under 
physiological conditions (Fig. 5B); This 
would suggest that the 85- and 87-kD pro- 
teins purified by DiDonato et al. (12) in 
roughly equivalent amounts may corre- 
spond to IKK-a and IKK-P, respectively. 

The existence of IKK homo- and het- 
erodimers and the ability of NIK to interact 
with both IKK isoforms suggested two possible 
types of NIK-IKK complexes. In one scenario, 
monomeric IKK might interact with either 
another IKK subunit or with NIK. Altema- 
tively, NIK might associate with dimeric 
forms of IKK, and thus all three kinases could 
exist in a single complex. To  address these 
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Fig. 4. Interaction of IKK-p with IKK-a, 
extracts :/!:;: NIK, and IKB-a. Numbers at left of all pan- 
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1 2 3 4 5 6 7 8 9 1 0  Myc-NIK and Flag-IKK-p (5 mg) (lanes 3 
and 4); or Myc-NIK and Flag-IKK-p with 

increasing amounts of untagged IKK-a: 0.3 mg (lanes 5 and 6), 1.0 mg (lanes 7 and 8), or 3.0 mg 
(lanes 9 and 10). After 36 hours, cell lysates were immunoprecipitated with monoclonal anti-Flag 
(lanes labeled F) or control mouse IgG (lanes labeled C). Coprecipitating Myc-NIK proteins were 
detected with anti-Myc (top panel), and coprecipitating IKK-a proteins were detected with anti-IKK-a 
(second panel). Portions of total cell extracts were also immunoblotted with anti-Myc and anti-Flag 
(third panel) or anti-IKK-u (bottom panel). (6) Coprecipitation of overexpressed IKK-p and IKB-a; 293 
cells (2 x 107 were transiently transfected with equivalent amounts (3 mg) of the indicated expres- 
sion plasmids. After 30 hours, Flag-IKK-p proteins were immunoprecipitated (IP) with monoclonal 
anti-Flag. Coprecipitating IKB-a was detected by immunoblot analysis (upper panel). Portions of total 
cell extracts (10 ml) of the same transfections were also immunoblotted with polyclonal anti-IKB-a 
(lower panel). Arrows mark the positions of unphosphorylated IKB-a proteins and of IKB-a phospho- 
rylated on serines 32 and 36. 
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MY-IKK-~ + + I K B - ~ ~ ~ . ~ ~ ~ ~  + 

I*-q1 250 S36A1 + 47- - 
175 - 4 NIK IrB-qi  250 S32AI + 

IKK-B I*-ql-250. S32 36A) + 

83-- 4 IKK-a lrB-a(l 250) , , , , , , , 32-  * L a 4 l d - a  

Fig. 3. In vitro phosphorylation of IKB proteins by IKK-a and IKK-p. Num- 
bers at left of all panels indicate positions of molecular size markers in 
kilodaltons. (A) Comparison of IKB-a phosphorylation by IKK-a and IKK-p. 
293 cells were transiently transfected with the indicated epitope-tagged 
expression vectors. Twenty-four hours after transfection, IKK proteins 
were immunoprecipitated with monoclonal antibody to Flag (anti-Flag) 
affinity resin and purified as described (24). Purified IKK proteins as indi- 
cated (lanes 1 through 5) or purified IKK-p with coprecipitated NIK (lane 6), 
IKK-a (lane 7), or IKK-a and NIK (lane 8), were used in in vitro kinase 
reactions with bacterially expressed IKB-~(,.,,,, and [y-32P]ATP. Arrow- 
heads indicate the positions of IKK proteins, NIK, and IKB-a,,.,,,, proteins. 
Lanes 3 and 5 contain identical samples; the two halves of the figure were 
exposed for different lengths of time. (6) Specificity of IKB phosphorylation 
by IKK-p. Flag-IKK-p protein, purified as described above (24), was used 
in in vitro kinase reactions with bacterially expressed IKB-~(,.,,, pro- 

H 4 IKK-P 83. - I. i * IKK-P 
Blot: ant-Flag 
1 2 3 4  

0 4 IKB-a 
28 - 

1 2 3 4 5 6 7 8  

teins with the indicated mutations (lanes 1 through 4) or the indicated 
IKB-P(~.~,,, proteins (lanes 5 through 8). Arrowheads indicate the positions 
of IKK-p, IKB-p,,.,,,,, and IKB-~(,.~,,,. (C) Cytokine activation of IKK-p in 
mammalian cells. HeLa cells were transiently transfected with vector con- 
trol or a Flag-IKK-p expression plasmid. Thirty-six hours after transfection, 
the cells were treated with TNF (1 00 ng/ml) or IL-1 (1 0 ng/ml) for 8 min, and 
the IKK-p protein was irnmunoprecipitated with monoclonal anti-Flag. The 
immunoprecipitates were used in in vitro kinase reactions with bacterially 
expressed IKB-~~,-,,,, and [y-32P]ATP. As a control for IKK-p protein 
expression, one-half of the in vitro kinase reactions were analyzed by 
immunoblotting with polyclonal anti-Flag (lower panel). Arrowheads indi- 
cate the positions of IKB-cr,,,,,, and IKK-p proteins. 
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two alternatives, we coexpressed Flag-tagged 
IKK-P and Myc-tagged NIK with increasing 
amounts of untagged IKK-a. IKK-P was im- 
munoprecipitated from extracts with antibod- 
ies to Flag, and coprecipitating NIK and 
IKK-a were detected by immunoblotting (Fig. 
4A). Increased amounts of IKK-a resulted in 
conversion of IKK-P homodimers to the pre- 
ferred IKK-a/IKK-P heterodimeric state (see 

Blot: anti-Myc 
, , , , t , , , , #  

Blot: anti-Flag 
1 2 3 4 5 6 7 0 9 1 0  

Fig. 5. Interaction of IKK-p B ~i,: pre IKK.P 
with IKK-a. Numbers at 
left of panels indicate posi- 97- ' 9  4KK-a 

tions of molecular size 1 2  
markers in kilodaltons. (A) Blot: anti-IKK-a 

Two hundred ninety-three cells (2 x 10") were 
transiently transfected with equivalent amounts (3 
mg) of the indicated expression plasrnids. After 36 
hours, cell lysates were imrnunoprecipitated with 
monoclonal anti-Flag (lanes labeled F) or control 
mouse IgG (lanes labeled C). Coprecipitating 
Myc-IKK proteins were detected by immunoblot 
with polyclonal anti-Myc (upper panel). Portions of 
total cell extracts (1 0 rnl) were also imrnunoblotted 
with anti-Myc (middle panel) or with polyclonal 
anti-Flag (bottom panel). Arrowheads indicate the 
positions of IKK-a and IKK-p proteins. (B) IKK-a/p 
heterodimers. Coirnrnunoprecipitation was done 
with polyclonal anti-IKK-n and anti-IKK-p (21). 
Two hundred ninety-three cell lysates were incu- 
bated with antCIKK-p, and coprecipitating IKK-a 
was detected by immunoblot analysis (21). Ab, 
antibody; Pre, pre-immune serum. 

Fig. 5A), and NIK was still precipitated (Fig. 
4A). Thus, NIK appears to interact with an 
IKK-a/IKK-P heterodimer. 

The fact that NIK, IKK-a, and IKK-P can 
exist in a ternary complex suggests that the 
IKKs have distinct or multiple domains for 
protein-protein interaction. We tested a series 
of IKK-P deletion mutants for interaction with 
IKK-a, IKK-P, NIK, and IKB-a (Fig. 6). The 
region of IKK-P containing the leucine zipper- 
like motif was required both for homodimeriza- 
tion of IKK-P and for formation of het- 
erodimers with IKK-a, whereas the putative 
helix-loop-helix region was dispensible. Mu- 
tant IKK-P proteins consisting of the kinase 
domain alone or lacking this domain entirely 
both associated with NIK, indicating that mul- 
tiple regions of IKK-P can bind to NIK (Fig. 
6). Interaction of IKK-P with its substrate 
IKB-a required both the kinase and leucine 
zipper domains, suggesting that IKK-P dimeriza- 
tion may be necessary for recognition of IKB-a. 

The results described here identify IKK-P as 
a second cytokine-activated IKB kinase. Com- 
pared to IKK-a, IKK-$ is more active in NF-KB 
reporter gene assays and as an IKB kinase. 
Likewise, IKK-a and IKK-$ have somewhat 
different substrate specificities. IKK-P phos- 
phorylates the a and P members of the IKB 
family of inhibitory proteins on the appropriate 
serine residues, whereas IKK-a phosphory- 
lates serine 19 of IKB-P quite poorly. IKK-a 
and IKK-f3 may normally exist as a leucine 
zipper-linked heterodimer that can interact 
directly with the upstream kinase NIK. Fur- 
thermore, catalytically inactive versions of 
NIK (1 O), IKK-a (I 1 ), and IKK-P indepen- 
dently block the activation of NF-KB trig- 
gered by either TNF or IL-1. One inter- 
pretation of these results is that all three 
kinases are components of the large 700- to 
900-kD IKB kinase complex (12, 22), and 
each is essential for activity of the complex. 
IKB kinase complexes containing homo- 
dimers of IKK-a and IKK-P may also exist, 
each having somewhat different properties 
and therefore providing variations on the 
common theme of signal-regulated IKB 
phosphorylation. 

Fig. 6. Analysis of IKK-p Interactions 
deletion mutants. The hor- IKK-a IKK-B NIK I- 

izontal bars represent the ,Id type Kinas, Domein I 
7% 

u HLHI + + + + 
sequence of IKK-p, with -- 

013 

kinase (shaded), leucine 1-579 Klnase  DO^^^" 1 u I + + +  
zipper (LZ), and helix- 1 470 

loop-helix (HLH) domains 1 4 7 0  1 Knase Dwnain I L - + -  
indicated. The amino ac- 

1 Kina= Doma," 303 ids contained in each de- - + -  
letion mutant are indicat- ,w,,, 304 756 

LZ HLH I + + + - 
ed. Interactions of the 
Myc-IKK-P mutants with Flag-IKK-a, Flag-IKK-p, Flag-NIK, and Fhg-I~B-cx were determined by coimmu- 
noprecipitation assays of 293 cells (18). A plus sign indicates that the two proteins did associate upon 
overexpression, whereas a minus sign indicates that no association was detected. The expression of all 
proteins was confirmed by immunoblot analysis of total cell lysates. Results are representative of two 
independent experiments. 
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