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IKK-1 And IKK-2: Cytokine-Activated IKB 
Kinases Essential for NF-KB Activation 

Frank Mercurio,* Hengyi Zhu, Brion W. Murray, 
Andrej Shevchenko, Brydon L Bennett, Jian wu Li, 
David B. Young, Miguel Barbosa, Matthias Mann, 

Anthony Manning, Anjana Rao 

Activation of the transcription factor nuclear factor kappa B (NF-KB) is controlled by 
sequential phosphorylation, ubiquitination, and degradation of its inhibitory subunit IKB. 
A large multiprotein complex, the IKB kinase (IKK) signalsome, was purified from HeLa 
cells and found to contain a cytokine-inducible IKB kinase activity that phosphorylates 
kB-a and kB-p. Two components of the IKK signalsome, IKK-1 and IKK-2, were 
identified as closely related protein serine kinases containing leucine zipper and helix-
loop-helix protein interaction motifs. Mutant versions of IKK-2 had pronounced effects 
on RelA nuclear translocation and NF-KB-dependent reporter activity, consistent with 
a critical role for the IKK kinases in the NF-KB signaling pathway. 

1 ranscription factors of the N F - K B Rel 
family are critical regulators of genes that 
function in inflammation, cell proliferation, 
and apoptosis (1). The prototype member of 
the family, N F - K B , is composed of a dimer 
of P50 ( N F - K B 1 ) and P65 (RelA) (2). N F -
KB exists in the cytoplasm of resting cells 
but enters the nucleus in response to vari­
ous stimuli, including viral infection, ultra­
violet irradiation, and proinflammatory cy­
tokines such as tumor necrosis factor a 
(TNF-a) and interleukin-1 (IL-1) (1, 3). 

Activation of N F - K B is controlled by an 
inhibitory subunit, IKB, which retains N F -
KB in the cytoplasm (4). N F - K B activation 
requires sequential phosphorylation, ubiq­
uitination, and degradation of IKB as well as 
consequent exposure of a nuclear localiza­
tion signal on N F - K B (5). Ser32 and Ser36 of 
I KB-a, and the corresponding Ser19 and 
Ser23 of IKB-(3, represent critical phospho-
rylated residues (6). The IKB kinase shows a 
high degree of specificity for these residues, 
because an I KB-a variant in which Ser32 

and Ser36 were substituted by Thr (S32T, 
S36T) showed much reduced phosphoryl­
ation and degradation in stimulated cells 
and interfered with endogenous N F - K B ac­
tivation (6). 

To identify the IKB kinase responsible 
for the initial critical step of N F - K B activa-
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tion, we fractionated whole-cell extracts 
(WCEs) from TNF-a-stimulated HeLa 
cells by standard chromatographic methods 
(7). We assayed IKB kinase activity in each 
fraction by phosphorylating glutathione-S-
transferase (GST)-IicB-a (1-54) or GST-
IKB-(3 (1-44) (8). Kinase specificity was 
established by using (S32T, S36T) mutant 
GST-kB-a (1-54) [GST-IicB-a (1-54; 
S32T, S36T)], and G S T - I K B - ( 3 (1-44), in 
which Ser19 and Ser23 were mutated to Ala 
[GST- IKB- (3 (1-44; S19A, S23A)] (8). IKB 
kinase activity was not observed in un­
stimulated cell extracts but was strong in 
cells stimulated for 5 to 7 min with TNF-a 
(9). Gel-filtration chromatography resolved 
this IKB kinase activity in a broad peak of 
500 to.700 kD (Fig. 1A). In contrast to the 
600-kD IKB kinase complex that was ob­
served after treatment of cell extracts with 
either okadaic acid or ubiquitin-conjugat-
ing enzymes (10), the IKB kinase activity 
described here displayed no requirement for 
ubiquitination (9). We refer to the protein 
complex that contains the inducible IKB 
kinase activity as the IKK signalsome. 

N F - K B activation occurs under condi­
tions that also stimulate mitogen-activated 
protein kinase (MAP kinase) pathways 
(11). We tested preparations containing 
the IKK signalsome for the presence of 
proteins associated with MAP kinase and 
phosphatase cascades (Fig. IB). The MAP 
kinase kinase-1 (MEKK-1) and two Tyr-
phosphorylated proteins of —55 and ~40 
kD copurified with IKB kinase activity 
(Fig. IB). A protein of —50 kD that re­
acted with an antibody to MAP kinase 
phosphatase-1 (anti-MKP-1) also copuri­
fied with the IKB kinase through several 
purification steps. 
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W e  examined antibodies against pro- 
teins copurifying w i t h  the IKK signalsome 
activity for their abil ity t o  immunoprecipi- 
tate IKB kinase activity. Of a panel o f  an- 
tibodies tested, one o f  three anti-MKP-1 
efficiently coimmunoprecipitated an  induc- 
ible IKB kinase activity from HeLa cells 
(12) and primary human umbilical vein 
endothelial cells (HUVECs) (9). IKB ki- 
nase activity was no t  detected in immuno- 
precipitates from unstimulated HeLa cells, 
but it was detected wi th in minutes o f  expo- 
sure o f  cells t o  TNF-a  (Fig. 2A). This IKB 
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Fig. 1. ldentification of the IKK signalsome. (A) 
IKB-a kinase activity chromatographs as a large 
complex (500 to 700 kD). WCE of TNF-a-stimu- 
lated (20 ng/ml; 7 min) HeLa S3 cells was pre- 
pared, fractionated on a Superdex 200 gel-filtra- 
tion column, and monitored for IKB-a kinase ac- 
tiilty (8). Phosphorylation of the GST-IKB-a (1-54) 
WT substrate is indicated by arrow on the right. 
Molecular mass standards are indicated by ar- 
rows on top. (B) ldentification of proteins that co- 
chromatograph with the IKK signalsome. IKK sig- 
nalsome was partially purified from extracts of 
TNF-a-stimulated Hela S3 cells by sequential 
fractionation on Q Sepharose, Superdex 200 gel- 
filtration, Mono Q, and phenyl Superose columns. 
Phenyl Superose fractions containing the peak of 
IKK signalsome activity were subjected to West- 
em blot analysis with several different antibodies, 
indicated on the left. The relative level of IKK sig- 
nalsome activity is indicated by the number of plus 
signs in upper shaded area. 
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Fig. 2. Biochemical prop- 
erties of IKK siqnalsome &.' 

Stimulation 0 3 5  7 10 15 30 60 120 min 

activity immunoprecipi- B $@' ,e @'* ,.a" 
tated by anti-MKP-1. (A) i,Q &-$ ' d*w dQ5<+ d 

I& degradation 

. . 
Increased act~vity of IKK 
slgnalsome after cell stim- K~nase 
ulat~on. (Upper) Time assay 
course for increased IKK 
signalsome activity. Antt 
MKP-1 immunoprecipi- 

1 2  

tates from extracts of H e b  53 cells stimulated with 
TNF-a (20 ng/ml) for the indicated times were as- 
sayed for 1 hour by a standard immune complex 
kinase assay. Either GST-IKB-a (1-54) WT or the 
GST-IKB-a (1-54; S32T. S36T) mutant (S+T) (4 
pg) was used as substrate. (Lower) IKB-a phospho- 
rylation and degradation kinetics. HeLa cell extracts 
prepared as described in the upper panel were ex- 
amined by protein imrnunoblotting for IKB-a degra- 
dation. IKB-a supershifting, a result of stimulus-de- 
pendent phosphorylation, is observed after 3 and 5 
min of stimulation followed by the disappearance of 
IKB-a. (6) Stimulus-dependent activation of IKK sig- 
nalsome is blocked by TPCK. AntCMKP-1 immuno- 
precipitates from cell extracts of HeLa S3 cells stim- 
ulated for 7 min with TNF-a (20 ng/ml; lanes 2 and 6), 
11-1 (1 0 ng/mi; lane 3), or PMA (50 ng/ml: lane 4). or 
treated for 30 min with TPCK (1 5 pM: lane 7) before 
stimulation with TNF-a, were examined for IKK sig- 
nalsome activity. GST-IKB-a (1-54) WT (4 pg) was 
used as substrate. (C) The IKK signalsorne phos- 
phorylates SeP2 and Ser36 of IKB-a. (Upper) IKB-a 
(21-41) peptides that were unphosphotylated or 
that had been synthesized with P-Ser at position 32 
or 36 were enzymatically phosphorylated by the IKK 
signalsome with [y-32P]ATP. The unrelated c-Jun 
(56-70), c-Jun (65-79), and MKP-1 (349466) pep- 
tides functioned as poor substrates for the IKK sig- 
nalsorne. (Lower) The same set of substrates de- 
scribed for the upper panel were subjected to enzy- 
matic phosphorylation by JNK2 with [Y-~~P]ATP 
used as a control. Specific peptide substrates used 
are indicated on top. Source of the kinase is indicat- 
ed on the left. Molecular mass standards (in kilodal- 
tons) are indicated on the right. (D) The IKK signal- 
some specifically phosphorylates SePZ and Ser3" of 
the IKB-a proteln and RelA in the context of a RelA- 
IKB-a complex. AntCMKP-1 immunoprecipitates 
from cell extracts of HeLa S3 cells stimulated with 
TNF-a (20 ng/ml; 7 min) were examined for their 
ability to phosphorylate recombinant RelA-IKB-a 
complex containing either WT IKB-a (lane 3) or IKB-a 
(S32A, S36A) mutant (lane 4) protein. Specific sub- 
strates used are indicated on top. Positions of phos- 
phorylated substrates are indicated by arrows on the 
left. 
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kinase did not phosphorylate GST-IKB-a 
(1-54; S32T, S36T). IKB-a kinase activity 
was maximal by 5 min and declined there- 
after, consistent with the time course of 
IKB-a phosphorylation and degradation 
(Fig. 2A). Kinase activity was also induced 
by stimulation of cells with IL-1 or phorbol 
12-myristate 13-acetate (PMA) (Fig. 2B); 
moreover, no increase in activity was de- 
tected from HeLa cells treated with N- 
tosyl-L-phenylalanine chloromethyl ketone 
(TPCK), an inhibitor of NF-KB activation 
(6), before cell stimulation with TNF-a. 

We established the substrate specificity 
of the IKK signalsome by using various pep- 
tides and recombinant proteins (8, 13). The 
kinase was capable of phosphorylating an 
IKB-a (21-41) peptide as well as two addi- 
tional IKB-a (21-41) peptides, each bear- 
ing an unmodified Ser at position 32 or 36 
and phosphoserine (P-Ser) at the other po- 
sition (Fig. 2C). An IKB-a (21-41) peptide 
bearing Thr at both positions was phospho- 
rylated <one-tenth as well as wild-type 
(WT) peptide, whereas an IKB-a (21-41) 
peptide bearing P-Ser at both positions was 

not phosphorylated at all (9). The IKK 
signalsome did not phosphorylate two c-Jun 
peptides containing Ser63 and Ser73, respec- 
tively, or an MKP-1 peptide containing four 
Ser and three Thr (Fig. 2C). The latter 
peptides were substrates for JNK2. These 
experiments indicate that Se22 and Se26 
were both specifically phosphorylated by 
the IKK signalsome. 

The IKK signalsome phosphorylated 
WT IKB-a but not IKB-a (S32A, S36A) in 
the context of a physiological RelA-IKB-a 
complex (Fig. 2D). GST-IKB-P (1-44) was 
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Fig. 3. Purification and cloning of IKK-1 and IKK-2. (A) Amino acid sequence comparison of human 
IKK-1 and IKK-2. Arrows, boundaries of the kinase domain; underlining, peptide sequences identified by 
nanoelectrospray mass spectrometry; boldface, amino acid identities conserved between IKK-1 and 
IKK-2; asterisks, amino acid identrty to a region conserved among the MEK family of protein kinases 
demonstrated to be essential for stimulus-dependent activation; NH,-terminal boxed area, leucine 
zipper motif; COOH-terminal boxed area, helix-loop-helix domain; dashes, gaps inserted to optimize 
alignment. (B) Purified IKK signalsome fractions contain two prominent bands at 85 and 87 kDa. WCE 
was prepared from TNF-a-stimulated (20 ng/rnl; 7-min induction) HeLa S3 cells (1.2 g of total protein). 
The IKK signalsome was immunoprecipitated from the HeLa 53 WCE with anti-MKP-1 antibodies, 
washed with buffer containing 3.5 M urea, and eluted overnight with excess MKP-lspecific peptide. 
Eluted IKK signalsome was subjected to Mono Q chromatography. Fractions containing active IKK 
signalsome activity were subjected to SDS-PAGE, and protein bands were visualized by a standard 
silver staining protocol. Peak IKK signalsome activity is associated with lanes 3,4, and 5. Protein bands 
corresponding to IKK-1 and IKK-2 are indicated on the right. Molecular mass standards (kD) are 
indicated on the left. 
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also phosphorylated, albeit with lower affin- 
ity; the Km for IKB-P was tenfold higher 
than the Km for IKB-a (9). The IKK signal- 
some also contained a strong RelA kinase 
activity that was distinct from the IKB ki- 
nase activity in that it was dissociated from 
the IKK signalsome by rigorous washing (9). 
No activity toward several other substrates 
was observed, including myelin basic pro- 
tein (MBP), GST-activation transcription 
factor-2 (ATF2) (1-112), GST-c-Jun (1- 
79), GST-extracellular signal regulated ki- 
nase (ERK3), GST-Elk-1 (307-428), GST- 
p38, and a GST fusion protein containing 
the COOH-terminal region of IKB-a (242- 
314) (9). 

We developed a two-step IKK signal- 
some purification method. Proteins from 
whole-cell lysates of TNF-a-stimulated 

HeLa cells were immunoprecipitated with 
anti-MKP-1. We eluted the IKK signal- 
some with an MKP-1 peptide and fraction- 
ated it further by anion-exchange chroma- 
tography (14). Fractions with IKB kinase 
activity were pooled and subjected to pre- 
parative SDS gel electrophoresis. Two 
prominent protein bands of 85 and 87 kD 
(designated IKK-1 and IKK-2, respectively, 
in Fig. 3B) correlated with the peak of IKB 
kinase activity. The 85- and 87-kD bands 
were excised, digested with trypsin, and 
analyzed by high mass accuracy matrix- 
assisted laser deposition and ionization 
(MALDI) peptide mass mapping (15, 16). 
The 85-kD band was identified as CHUK 
(conserved helix-loop-helix ubiquitous ki- 
nase) (1 7), whereas the 87-kD band was not 
found in a comprehensive database. Three 

peptides derived from the 87-kD band were 
sequenced by nanoelectrospray tandem 
mass spectrometry (18) and found as iden- 
tical matches to human expressed sequence 
tag (EST) clones (15) that were similar to 
human and mouse CHUK ( 17). Once the 
complete coding sequence of IKK-2 was 
obtained (1 9), all sequenced peptides (apart 
from two peptides derived from IKK-1) 
could be assigned to this protein (Fig. 3A). 

Sequence analysis revealed that IKK-1 
and IKK-2 are related protein serine kinases 
(51% identity) containing protein interac- 
tion motifs (Fig. 3A). Both contain the 
kinase domain at the NH,-terminus with a 
leucine zipper motif and a helix-loop-helix 
motif in the COOH-terminal region. North- 
em blot analysis indicated that mRNAs en- 
coding IKK-2 were widely distributed in hu- 
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Fig. 4. Expression of IKK-1 or IKK-2 generates 
IKB kinase activity. (A) Expression of IKK-1 or 

lxBa(2141) , GST-lrB-p IKK-2 in RRLs generates IKB kinase activity. Ei- 
0: ther HA-tagged IKK-I (lane 1) or Flag-tagged 

P-ser I - 32 36 1 (: IKK-2 (lane 2) was translated in RRLs, immuno- 

precipitated, and examined for the ability to 
IKK-I phosphorylate GST-IKB-a (1-54) W T and GST- 

IKB-p (1-44), as indicated by arrows. IKK-1 (lane 1 ) undergoes significant autophosphorylation in contrast to IKK-2 (lane 
2). which autophosphorylates much more weakly. (B) IKK-1 or IKK-2 expressed in RRLs displays the ability to 
phosphorylate SerT2 and Ser3" of IKB-a. IKB-a (21-41) peptides that were unphosphorylated or that had been 

IKK-2 synthesized with P-Ser at position 32 or 36 were enzymatically phosphorylated by immunoprecipitates containing 
HA-tagged IKK-I (Upper) or Flag-tagged IKK-2 (Lower) expressed in RRLs. The unrelated MKP-1 (349466) peptide 
was included as a control. Specific peptide substrates used are indicated on top. (C) IKK-1 and IKK-2 display distinct 
modes of regulation when overexpressed in mammalian cells. HeLa cells were transiently transfected with either 

HA-tagged IKK-1 or Flag-tagged IKK-2 expression vectors. Thirty-six hours after transfection, cells were left unstimulated or were stimulated with TNF-a (20 
ng/ml) for the indicated times. Activities of the tagged kinases were determined by immunokinase assays with GST-IKB-CL (1-54) WT or GST-IKB-a (1-54; 
S32T. S36T) used as substrate. The transfected k~nase is indicated on the left. (D) Endogenous IKK-1 and IKK-2 display activation kinetics identical to the IKK 
signalsome activity. Endogenous IKK-1 and IKK-2 were immunoprecipitated, with antibodies directed against IKK-1 and IKK-2, from HeLa WCEs prepared 
from cells that were left unstimulated or that were stimulated with TNF-a (20 ng/ml) for the indicated times. The immunocomplexes were then subjected to 
standard kinase assays with GST-IKB-a (1-54) WT or GST-IKB-p (1-44) WT as substrate, as indicated on the left. (E) A constitutively active version of IKK-2 
is generated by (S177E, S181 E) mutations in the activation loop resembling those of the MEKfamily kinases. (Upper) Flag-tagged IKK-2 WT (lane 1). (S177A, 
S181A) (lane 2), (S177E, S181 E) (lane 3), and K44M (lane 4) were translated in RRLs, immunoprecipitated with anti-Flag, and examined for their ability to 
phosphorylate GST-IKB-a (1-54) WT. Phosphorylated GST-IKB-a (1-54) and autophosphorylated IKK-2 are indicated with an arrow on the left. IKK-2 
mutants are indicated at the top. (Lower) An equal portion of each immunocomplex, as indicated in the upper panel, was subjected to Western blot analysis 
with anti-Flag to establish relative levels of IKK-2 protein expression. 
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man tissues, with transcript sizes of about 4.5 CD28 plus PMA (Jurkat) (9). 
and 6 kb (9). IKK-1 and IKK-2 mRNAs were Immunoprecipitates of epitope-tagged 
expressed in Jurkat, HeLa, and HUVEC cell IKK-1 and IKK-2, expressed in rabbit re- 
lines, and their amounts were not altered for ticulocyte lysates (RRLs) (20), phosphoryl- 
up to 8 hours after stimulation of cells with ated IKB-a and IKB-P (Fig. 4A). IKK-1 
TNF-a (HeLa and HUVEC) or antibody to autophosphorylated (Fig. 4A), whereas a 

Fig. 5. IKK-2 mediates an essen- A 

Flag Ab .) 
FlapIKK-2 -) 

HA-IKK-1 -) 
HA Ab + 

1 2 3 4 5 6 7 8 9  

- 
tiaistep in the NF-KB activation 100 
pathway. (A) IKK-2 mutants block 8 
stimulus-dependent RelA nuclear 80 
translocation. HeLa cells were 3 
transiently transfected with func- 
tionally equivalent mutants of ei- $ 60 
ther HA-tagged IKK-1 or Flag- $ 
tagged IKK-2 as indicated [HA- 2 40 
tagged IKK-1 WT, K44M (K-M), 5 
(S176A, S180A) (SS-AA), 8 
(S176E, S180E) (SS-EE); Flag- 20 

tagged IKK-2 WT, K44M (K-M), 
(S177A, S181A) (SS-AA), TNF-a - + - + - + - + - + - + - + - + 

(S177E, S181 E) (SS-EE)]. Thir- WT K+M SS+AASS+EE, WT K+M SS+AASS+EE 
ty-six hours after transfection, IKK-1 IKK-2 
cells were not stimulated or were 
stimulated with TNF-a (20 ng/ml) for 30 min (TNF- B 35, 

Fig. 6. Interaction between IKK-1 and IKK-2. (A) IKK-1 and IKK-2 coprecipitate when translated in 
RRLs. HA-tagged IKK-1 and Flag-tagged IKK-2 were translated in vitro in RRLs either separately or in 
combination. The programmed translation mixture was then subjected to immunoprecipitation with the 
indicated antibody. Samples were subjected to SDS-PAGE and autoradiography. (B) IKK-1 and IKK-2 
coprecipitate when coexpressed in HeLa cells. Hela cells were transiently cotransfected with HA- 
tagged IKK-1 and Flag-tagged IKK-2. Thirty-six hours after transfection, cells were harvested and WCEs 
were prepared. Lysates were then immunoprecipitated with anti-flag or anti-APC (adenomatous polyp- 
osis coli). The immunocomplex was subjected to SDS-PAGE and protein immunoblotting with anti-HA 
or anti-Flag as indicated on the left. 

a). Cells were then subjected to immunocyto- 
chemical analysis with anti-HA or anti-Flag to vi- 30: 
sualize expression of IKK-1 and IKK-2, respective- 251 
ly. Anti-RelA were used to monitor stimulus-de- = ! 
pendent nuclear translocation of RelA. Cellular % 201 
immunofluorescence was analyzed for the pres- % ! 
ence of RelA nuclear staining as a function of 2 15: 
either WT or mutant IKK-1 or IKK-2 expression. 10: 
Data are presented as percentage of transfected 
cells expressing the indicated IKK protein that dis- 5: 
play clear RelA nuclear staining; >50 cells were 0- 

kinase-inactive version of IKK-1, in which 
the conserved Lys44 was mutated to Met 
(K44M), showed no autophosphorylation 
(9). IKK-2, although expressed in equiva- 
lent amounts in the lysates, showed very 
weak autophosphorylation. Immunoprecipi- 
tates of either IKK-1 or IKK-2 phosphoryl- 
ate the IKB-a (21-41) peptide and two 
different IKB-a (21-41) peptides, each 
bearing an unmodified Ser at position 32 or 
36 and P-Ser at the other position (Fig. 4B). 
IKK-1 and IKK-2, therefore, can indepen- 
dently phosphorylate both Se?2 and S e P .  

Regulation of recombinant IKK-1 and 
IKK-2 activity, overexpressed in HeLa cells, 
appeared markedly different. Immunopre- 
cipitates containing recombinant IKK-1 
were inactive unless the cells were stimu- 
lated (Fig. 4C). In contrast, IKK-2 immu- 
noprecipitates yielded strong constitutively 
active IKB kinase activity in the absence of 
cell stimulation. However, immunoprecipi- 
tates containing the endogenous IKKs were 
inactive unless the cells had been stimulat- 
ed (Fig. 4D). Interestingly, both IKK-1 and 
IKK-2 contain a canonical MAP kinase 
kinase (MAPKK) activation loop motif 
(Ser-Xaa-Xaa-Xaa-Ser, where Xaa is any 
amino acid) (Fig. 3A). Phosphorylation of 
both Ser residues is necessary for activation 
of MAPKK (21 ). We generated IKK-2 mu- 
tants in which Ser'77 and SerlS1 were mutat- 
ed to Ala or Glu (S177A, S181A or S177E, 
S181E) to block or mimic, respectively, the 
effect of P-Ser. When expressed in RRL, 
IKK-2 (S177E, S181E) generated a highly 
active IKB-a kinase activity (Fig. 4E). The 
corresponding IKK-1 (S176E, S180E) muta- 
tion minimally enhanced kinase activity (9). 

Both IKK proteins appear to have roles in 
NF-KB activation, although our data indi- 
cate that IKK-2 is more active. Immunocy- 
tochemical studies (22) showed that IKK-2 
K44M and IKK-2 (S177A, S181A) mutants 
had no effect on subcellular localization of 
RelA in unstimulated HeLa cells. However, 
both mutants inhibited RelA nuclear trans- 
location in TNF-a-stimulated cells (Fig. 
5A). The corresponding IKK-1 mutants, 
expressed at approximately equivalent 
amounts, had little inhibitory activity (Fig. 
5A). The effects of the IKK-1 and IKK-2 
mutants on NF-KB-dependent gene expres- 
sion (Fig. 5B) paralleled those observed in 
the immunocytochemical studies (Fig. 5A). 
Both IKK-2 K44M and IKK-2 (S177A, 
S181A) inhibited TNF-a-stimulated NF- 
KB-mediated gene activation, whereas IKK- 
2 (S177E, S181E) induced activity in the 
absence of cell stimulation (Fig. 5B). Ex- 
pression of IKK-1 mutants also perturbed 
NF-KB-mediated gene expression, although 
the effects were not as pronounced as for 
the IKK-2 mutants. 

The IKK family of serine protein kinases 

- - 
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scored pertreatment. (B) Expression of IKK-2 mu- TNF-a - I - I - I + I + I + I + 

tants has a marked effect on NF-KB-dependent IKK-2 - wr SS-EE - \KT K-M SS-AA 
gene activation. HeLa cells were transiently co- VeC'Or + - - + - - - 
transfected with a 3x  NF-KB luciferase reporter 
vector and either an empty control vector or an IKK-2 expression vector as indicated. Thirty-six hours 
after transfection cells were not stimulated or were stimulated with TNF-a (20 ng/ml) for 5 hours before 
harvesting. Luciferase activities were determined and normalized on the basis of p-galactosidase 
activity. Average induction (fold) of luciferase activity was determined from a representative transfection 
experiment done in duplicate. 



are unique in that they contain both a 
leucine zipper and a helix-loop-helix inter- 
action motif. W e  examined both in vitro and 
in vivo whether IKK-1 and IKK-2 form sta- 
ble heterodimers. Influenza virus hemagglu- 
tinin (HA) epitope-tagged IKK-1 and Flag 
(IBI-Kodak) epitope-tagged IKK-2 were 
translated in RRLs, either alone or together, 
and then immunoprecipitated (Fig. 6A). 
IKK-2 was present in IKK-1 immunoprecipi- 
tates and vice versa. Heterodimerization ap- 
pears to be favored over homodimerization, 
because IKK-1 and IKK-2, when expressed 
separately and then combined, quantitative- 
ly form heterbdimers (9). IKK-1 and IKK-2 
also coimmunoprecipitate when coexpressed 
in HeLa cells (Fig. 6B). Removal of the leu- 
cine zipper and helix-loop-helix interaction 
motifs abrogated heterodimerization (9). 

The  IKB kinase responsible for the ini- 
tial and critical step of NF-KB activation 
has been the subject of intense interest. 
Many kinases have been proposed as candi- 
dates (23), but only the recently described 
CHUK IKK-a ( 24 ) ,  which we refer to  as 
IKK-1, has the characteristics expected of a 
cytokine-inducible, IKB kinase. W e  have 
identified IKK-1 and the closely related 
kinase IKK-2 as interacting components of 
the IKK signalsome, a multiprotein signal- 
ing complex that regulates NF-KB activa- 
tion in  response to proinflammatory cyto- 
kines. Our results strongly suggest that 
IKK-1 and IKK-2 are functional kinases 
within the IKK signalsome that mediate 
IKB phosphorylation and NF-KB activation. 
As a protein complex containing multiple 
interacting components, including a RelA 
kinase, the IKK signalsome has the poten- 
tial to integrate the diverse signaling path- 
ways known to activate NF-KB in different 
cell types and channel them toward selec- 
tive gene expression. Drugs that modulate 
the activation and function of the IKK 
signalsome are likely to have therapeutic 
value in  inflammatory and neurodegenera- 
tive diseases as well as in  cancer. 
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IKB Kinase-P: NF-KB Activation and Complex 
Formation with IKB Kinase-a and NIK 

John D. Woronicz, Xiong Gao, Zhaodan Cao, Mike Rothe, 
David V. Goeddel* 

Activation of the transcription factor nuclear factor kappa B (NF-KB) by inflammatory 
cytokines requires the successive action of NF-KB-inducing kinase (NIK) and IKB ki- 
nase-a (IKK-a). A widely expressed protein kinase was identified that is 52 percent 
identical to IKK-a. IKB kinase-p (IKK-p) activated NF-KB when overexpressed and 
phosphorylated serine residues 32 and 36 of IKB-a and serines 19 and 23 of IKB-P. The 
activity of IKK-p was stimulated by tumor necrosis factor and interleukin-1 treatment. 
IKK-a and IKK-p formed heterodimers that interacted with NIK. Overexpression of a 
catalytically inactive form of IKK-p blocked cytokine-induced NF-KB activation. Thus, an 
active IKB kinase complex may require three distinct protein kinases. 

Transcriptional activation of inflammatory 
response genes by tumor necrosis factor 
(TNF), interleukin-1 (IL-1 ), and other ex- 
ternal stimuli is mediated by the transcrip- 
tion factor NF-KB (1, 2). Normally, NF-KB 
is held in  an inactive state in  the cytoplasm 
by IKB inhibitory proteins. When  cells are 
treated with TNF or IL-1, protein kinase 
cascades are activated that lead to uhosuho- . L 

rylation of IKB proteins on  two specific 
serine residues ( 1. 2 ) .  This signal-induced . ,  , u 

phosphorylation targets IKB for ubiquitina- 
tion and proteosome-mediated degradation, 
allowing nuclear translocation of NF-KB (2). 

Several steus of the TNF- and IL-l-acti- 
vated signaling pathways leading to IKB phos- 
phorylation have now been elucidated (3- 
10). Both pathways merge at the level of the 
protein kinase NIK (NF-KB-inducing kinase) 
(1 0).  T h e  molecular mechanisms by which 
NIK becomes activated are not yet under- 
stood. However, the protein kinase CHUK 
is a downstream target of NIK (1 1) that di- 
rectly associates w i g  IKB-a and sp'ecifically 
phosphorylates it on  serines 32 and 36 (1 1, 
12). These results have led to the redesigna- 
tion of CHUK as IKB kinase-a (IKK-a). 

IKK-a does not phosphoryla;e the ;wo 
serines required for degradation of a second 
member of the IKB family, IKB-P, with 
equal efficiency; it has a marked preference 
for serine 23 over serine 19 (1 1 ). This find- 
ing indicates that another kinase might be 
responsible for IKB-P phosphorylation. Fur- 
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thermore, mapping of the gene encoding 
CHUK revealed the presence of a CHUK- 
related sequence in the mouse genome (1 3) .  
T o  search for IKK-a-related kinases, we 
screened the National Center for Biotech- 
nology Information DNA database and 
identified a n  expressed sequence tag (EST) 
cDNA clone predicted to  encode a poly- 
peptide 57% identical to amino acids 624 to 
658 of IKK-a (14). Full-length human 
cDNAs corresponding to the EST sequence 
were isolated from a Jurkat T cell cDNA 
library and found to encode a 756-amino 
acid protein very similar to  IKK-a, which 
we designate IKK-P (Fig. 1). Overall, the 
sequences of IKK-a and IKK-P are 52% 
identical, with the NH,-terminal kinase do- 
mains sharing 64% identity and the COOH- 
terminal regions, which contain leucine zip- 
per and helix-loop-helix domains, having 
44% sequence identity. A n  IKK-P mRNA of 
-3.8 kb was detected by Northern (RNA) 
blot analysis in all tissues examined (1 5). 

T o  determine whether IKK-P might 
have a role in  NF-KB activation, we com- 
pared the ability of IKK-a and IKK-P to 
activate a n  NF-KB-dependent reporter 
gene in transiently transfected 293 cells 
(1 6). Overexpression of IKK-P gave consis- 
tently greater activation of the NF-KB re- 
porter than did IKK-a at  equivalent expres- 
sion levels (Fig. 2A). A catalytically inac- 
tive mutant of IKK-P, IKK-P(K44A), failed 
to activate the NF-KB-dependent reporter 
gene when overexpressed and inhibited 
both TNF- and IL-1-induced NF-KB acti- 
vation in a dose-dependent manner (Fig. 
2B). In constrast, overexpression of wild- 
type IKK-P further enhanced TNF- and 
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