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Fyn-Kinase as a Determinant of Ethanol 
Sensitivity: Relation to NMDA-Receptor Function 

Tsuyoshi Miyakawa," Takeshi Yagi," Hiromasa Kitazawa, 
Masahiro Yasuda, Nobufumi Kawai, Kenta Tsuboi, Hiroaki Niki? 

Animals vary in their sensitivity to ethanol, a trait at least partly determined by genetic 
factors. In order to identify possible responsible genes, mice lacking Fyn, a non-receptor 
type tyrosine kinase, were investigated. These mice were hypersensitive to the hypnotic 
effect of ethanol. The administration of ethanol enhanced tyrosine phosphorylation of the 
N-methyl-D-aspartate receptor (NMDAR) in the hippocampus of control mice but not in 
Fyn-deficient mice. An acute tolerance to ethanol inhibition of NMDAR-mediated exci- 
tatory postsynaptic potentials in hippocampal slices developed in control mice but not 
in Fyn-deficient mice. These results indicate that Fyn affects behavioral, biochemical, and 
physiological responses to ethanol. 

Ethanol (EtOH) is among the most widely 
abused drugs in the world, yet the neural 
mechanisms responsible for EtOH intoxica- 
tion and dependence are largely unknown. 
Genetic factors affect the determination of 
the behavioral responses to EtOH in ro- 
dents and humans ( l ) ,  but few specific 
genes that increase or decrease the drug 

actions have been reported (2 ,  3). 
Tyrosine kinases phosphorylate N-meth- 

yl-D-aspartate (NMDA) and y-aminobu- 
tyric acid A (GABA,) receptors and mod- 
ulate the electrophysiological function of 
these receptors (4-6). The function of 
these receptors is also modulated by EtOH, 
and they are hypothesized to be targets 
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through which EtOH exerts its behavioral 
effects (7). To investigate the possible in- 
volvement of Fyn tyrosine kinase in the 
behavioral sensitivity to EtOH, we assessed 
the hypnotic effect of EtOH on Fyn-defi- 
cient mice (8). At all doses tested, the 
duration of the loss of righting reflex 
(LORR) after EtOH administration was sig- 
nificantly longer for Fyn-deficient (ho- 
mozygous Fyn-deficient, fynz/fynz) mice 
than for control (heterozygous Fyn-defi- 
cient, +/fyrf) mice (Fig. 1A). It is unlikely 
that the difference between the two groups 
was due to a difference in the general ex- 
citability of the central nervous system or in 
the general ability of a mouse to right itself, 
as no significant differences were found in 
the duration of the LORR induced by flu- 
razepam (a benzodiazepine derivative) at 
any dose (Fig. 1B). Analysis of the blood 
EtOH concentration curve (8, 9) revealed 
no significant differences between the two 
groups (Fig. 1C). The enhanced sensitivity 
to EtOH is, therefore, likely due to changes 
in the sensitivity of the central nervous 
system rather than to changes in pharma- 
cokinetic or metabolic factors. Thus, lack of 
Fyn tyrosine kinase exacerbates the hypnot- 
ic effects of EtOH. 

Because EtOH enhances tyrosine phos- 
phorylation in A43 1 cells (a human epider- 
mal carcinoma) (1 0) and in neural cell line 
PC12 cells ( I 1 ), we examined whether such 
modulation of tyrosine phosphorylation by 
EtOH also occurred in the brains of +/finz 
and fm'/fynz mice (12). The level of ty- 
rosine phosphorylation after saline treat- 
ment was not significantly different be- 
tween the two groups. A significant en- 
hancement in tyrosine phosphorylation of a 
180-kD protein (p180) 5 min after EtOH 
administration was observed in the hip- 
pocampus of +/finz mice but not in the 
hippocampus of fynz/fynz mice (Fig. 2, A 
and B). The enhancement was also ob- 
served in C57BL/6, a standard inbred mouse 
strain. The lack of this up-regulation in 
finz/finz mice indicates that it is mainly 
mediated by Fyn tyrosine kinase. 

In the central nervous system of the rats, 
a tyrosine-phosphorylated protein band of 
molecular mass 180 kD in the postsynaptic 
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Fig. 1. Enhanced sensitivity to the hypnotic effect of EtOH in Fyn-deficient mice. Sensitivity was 
evaluated by measuring the duration of LORR after administration of (A) EtOH or (8) flurazepam (doses 
measured per kilogram of mouse body weight). Two-way analysis of variance (ANOVA) showed a 
significant difference [F(1,81) = 5.78, P < 0.021 in the sensitivity to EtOH. There was no significant effect 
in the sensitivity to flurazepam [F(1,100) = 0.39, P > 0.501. The number of animals tested is shown in 
parentheses below each column. Asterisks indicate a significant difference between +/fynzand fynz/fytF 
mice at each dose (simple main effect; *P < 0.05, **P < 0.01, ***P < 0.0001). (C) Blood EtOH 
concentration curve in +/fytF and fynz/fynz mice (seven mice of each genotype). There were no 
statistically significant differences between the two genotypes (two-way repeated-measure ANOVA). 
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Fig. 2. Up-regulation of protein tyrosine phosphorylation after EtOH administration. (A) Represen- 
tative immunoblots of extracts prepared after the administration of saline or EtOH with a phospho- 
tyrosine-specific antibody. Arrowheads indicate p180. (B) Quantification of the level of phosphoty- 
rosine at 180 kD. Two-way ANOVA showed that the effect of gene and treatmentxgene interaction 
were significant [F(1,32) = 5.88, P < 0.05; F(3,32) = 2.96, P < 0.051. A significant enhancement in 
tyrosine phosphorylation was observed 5 min after EtOH administration in +/fynZ mice [Tukey's 
honestly significant difference (HSD) test, a = 0.051 but not in fynz/fynz mice. (C) Tyrosine phospho- 
rylation of NMDARel and e2 and the amount of NMDARel and e2 protein in the hippocampus 5 min 
after the administration of saline (lane 1, +/fynz; lane 2, fynz/fyn3 or EtOH (lane 3, +/fynz; lane 4, 
fynz/fynz). Each sample with the same number was obtained from the same animal. Group effect was 
significant in tyrosine phosphorylation of NMDARe2 [F(3,20) = 4.18, P < 0.021. It was significantly 
greater 5 min after the administration of EtOH than it was 5 min after saline administration [control, 
1 .OO 2 0.00; EtOH, 2.89 2 0.58; Tukey's HSD test, u = 0.051 in +/fynzmice but not in fynz/fynz mice 
[control, 0.84 2 0.35; EtOH, 1.09 2 0.661. There were no significant group effects in the tyrosine 
phosphorylation of NMDARel [I .OO 2 0.00,0.61 2 0.1 2, 1.33 2 0.25, and 0.67 2 0.33, in the same 
order as that of the representative blots] nor in the amounts of the NMDARe1 [I .09 2 0.1 1, 1.12 2 
0.25, 1.25 2 0.21, and 1.15 2 0.121 and NMDARe2 [1.06 2 0.05, 1.00 2 0.07, 0.97 2 0.06, and 
1.12 2 0.111 proteins (P > 0.05). 
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Fig. 3. Acute tolerance to 
EtOH nh~b~tion of NMDAR- 
med~ated EPSPs. (A) T~me 
course of maxmal slope for 
EPSPs in the hippocampus 
of +/@nZ and @nZl@nz mice. 
The EtOH was bath-appied 
during the tme Indicated by 
the arrow. Five siices from 
four +l@nz mice and seven 
siices from seven @nzl@nz 
mice were used. Represen- 
tative traces of EPSPs in +I 
@nz mice (B) and @nzl@nz 
mice (C) during the control 
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period and 5 and 15 min af- 
ter the start of EtOH application. These EPSPs were almost completely significantly different from the mean with # (Tukey's HSD test, a = 0.05). (E) 
abolished by APV (I  0 pM). (D) Comparison of peak inhibition of EPSPs during Elimination of acute tolerance to EtOH inhibition by ifenprodil in +lfynz mice. 
the 15 rnin of EtOH application (Inhibition) and maximum reduction of inhibi- NMDAR-mediated EPSPs were inhibited by application of EtOH and ifen- 
tion after the peak inhibition of each slice (Tolerance) in +lfynz and fynzlfynz prodil (10 pM) in +lfynz mice [n = 6, repeated-measure ANOVA, F(2, 15) = 

mice. Two-way repeated-measure ANOVA showed a significant gene effect 13.39, P < 0.0001], but no significant difference was noted between the 
[F(1, 10) = 9.78, P < 0.021, toleranceeffect [F(1 ,lo) = 18.33, P <  0.0051, and EPSP amplitudes at 5 rnin and those at 15 rnin after the start of the applica- 
tolerancexgene interaction [F(1 , lo)  = 9.07, P < 0.021. Means with * are tion (Tukey's HSD test, a = 0.05). 

density fraction contains NMDARZB (cor- 
responding to NMDAREZ in mice) (13) 
and NMDARZA ( N M D A R E ~ )  (5). The 
tyrosine phosphorylation of NMDAR2B is 
up-regulated in response to lesions with 6- 
OH-dopamine (14), taste learning (1 5 ) ,  
and the induction of long-term potentia- 
tion (16). In addition, N M D A R E ~  and EZ 
are colocalized with Fyn in the postsynaptic 
density and phosphorylated by Fyn (5). 
Consequently, we investigated the level of 
tyrosine phosphorylation of N M D A R E ~  
and &2 after saline and EtOH treatment in 
the hippocampus, where the up-regulation 
occurred (1 7). Enhanced tyrosine phospho- 
rylation of NMDAREZ 5 min after EtOH 
treatment was observed in +/fynz mice but 
not in fynz/fynkice (Fig. ZC, first row). O n  
the other hand, +/f)1nz mice and f)1n"fynz 
mice had similar amounts of NMDAREZ 
after saline and EtOH administration (Fig. 
ZC, second row). Concerning N M D A R E ~ ,  
neither tyrosine phosphorylation nor the 
amount of receptor protein was up-regulat- 
ed (Fig. 2C, third and fourth rows). It is 
therefore likely that the enhanced tyrosine 
pho~phor~la t ion  of N M D A R E ~  after EtOH 
treatment accounts for the enhancement of 
tyrosine phosphorylation of p180. 

The inhibition of NMDAR-mediated ex- 
citatory postsynaptic potentials (EPSPs) by 
EtOH is gradually reduced during the period 
of EtOH exposure in hippocampal slices 
(acute tolerance) (18). This acute tolerance 
might be caused by the up-regulation of ty- 
rosine pho~phor~lat ion of NMDAR sub- 
units, because NMDAR currents are poten- 
tiated by tyrosine kinases in hippocampal 
neurons (4). To  test this possibility, we com- 
pared the effects of EtOH on NMDA-medi- 
ated EPSPs in the CAI hippocampal neu- 
rons of + /fynZ and fyni/fynz mice ( 19). Bath 

application of EtOH initially suppressed 
NMDA-mediated EPSPs, but the amplitude 
of the EPSPs gradually recovered in +/fynZ 
mice during the application of EtOH, show- 
ing the development of acute tolerance (Fig. 
3, A,  B, and D). By contrast, in fyn"fynz 
mice, EtOH suppressed NMDA-mediated 
EPSPs with little sign of development of 
tolerance (Fig. 3, A,  C ,  and D), and EPSPs 
recovered their original amplitude after 
EtOH was removed. Thus, modulation of 
NMDAR function by Fyn seems to be in- 
volved in the development of acute toler- 
ance to EtOH. Furthermore, the acute toler- 
ance was eliminated when EtOH was applied 
together with ifenprodil, an agent considered 
to be a selective antagonist of NMDAR 
containing NMDAREZ (20) (Fig. 3E). These 
findings are consistent with the notion that 
enhancement of tyrosine phosphorylation of 
NMDAREZ is a basis of the acute tolerance 
(21 1. 

Data have been accumulated to support 
the hypothesis that the inhibition of 
NMDA-mediated currents underlies the be- 
havioral effects of EtOH (22). Although it 
is not certain whether the hypnotic effects 
of EtOH are directly mediated by the hip- 
pocampus (from which some of the data, 
including ours, were derived), the hypoth- 
esis is further supported by our results: Fyn- 
deficient mice showed abnormalities in 
their behavioral sensitivity to EtOH togeth- 
er with abnormal responses of NMDAR to 
EtOH. 

Mice lacking the y isoform of protein 
kinase C (PKCy) are more resistant to the 
behavioral effects of EtOH, and these ef- 
fects could be mediated by modulation of 
GABAA receptor function (3). These find- 
ings and our present results indicate that 
kinases may regulate behavioral EtOH sen- 

sitivity by modulating the function of re- 
ceptors that are targets of EtOH, such as 
NMDA and GABAA receptors. 
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