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Sequencing the Human Genome 
Lee Rowen,* Gregory Mahairas, Leroy Hood 

A t the end of 1997, we are halfway 
through the time allotted for completing 
the Human Genome Project. The Human 
Genome Project aims to sequence the ge
nomes of the human and selected model 
organisms, identify all of the genes, and 
develop the technologies required to ac
complish these objectives. Significant 
progress has been made, particularly in 
identifying and mapping genes, developing 
a stable DNA-sequencing technology, and 
in building the computational tools 
required for the analysis of sequence data. 
Yet, the large-scale sequencing of the 
3 billion base pairs of the human genome 
has barely begun (Table 1). Approximate
ly 60 million base pairs have been 
analyzed to date. Of these, the longest 
contiguous stretch of human DNA se
quence in a public database is less than 1.5 
million base pairs (1). Here we discuss 
today's challenges for sequencing the hu
man genome. 

What Has Been Done So Far? 

Gene identification. The expressed genes 
from hundreds of different human tissues 
have been partially sequenced after copying 
the messenger RNAs into complementary 
DNA libraries. About 800,000 of these so-
called expressed sequence tags (ESTs) are 
available in public databases and at various 
Web sites (2). These represent perhaps 
40,000 to 50,000 genes of the estimated 
total of 10,000 to 100,000 human genes. 
ESTs from a variety of model organisms are 
also available. 

Mapping. Mapping requires the identi
fication of unique genome markers [for 
example, ESTs or sequence-tagged sites 
(STSs)] and their localization to specific 
chromosomal sites. STSs are unique ad
dresses generated by polymerase chain re
action primers that amplify just a single 
chromosomal site. Three techniques have 
been used for marker localization: genetic 
mapping (generally 1- to 10-Mb resolu-
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tion), fluorescence in situ hybridization 
(~1-Mb resolution), and radiation hybrid 
mapping (down to 50-kb resolution). By 
means of these techniques, markers have 
been placed on average every 200 kb 
across the genome (3). Using STS land
marks to identify and order clones, re
searchers have constructed a framework 
physical map for most of the human ge
nome from large inserts of human DNA 
cloned into yeast artificial chromosomes 
(YACs) in 1993 (4). A genetic map with 
more than 5000 highly polymorphic sim
ple sequence repeats is also available (5). 

Clone library construction. Human chro
mosomes cannot be sequenced directly. 
Rather, human DNA must be isolated, 
randomly fragmented, and cloned into 
vectors capable of stable propagation in a 
suitable host such as the bacterium Esch
erichia coli or yeast. Before sequencing, 
clones must be selected from libraries with 
chromosomal markers as probes, verified 
for their fidelity to the genome, and or
dered in a minimal-overlapping tiling path 
spanning a portion of a chromosome. Sev
eral cloning systems with insert sizes vary
ing from hundreds of base pairs to mega-
bases have been successfully developed. 
The ideal clone library for genomic se
quencing has the following features: (i) 
the clones are highly redundant, covering 
the entire human genome many times; (ii) 
the clone coverage is random and not 
biased toward or against specific regions of 
the genome; and (iii) the clones are stable, 
not subject to deletion or rearrangement 
during the propagation process. A signifi-

Table 1 . Current state of genome sequence, as of 
September 1997. 

Organism Size Se- Percent 
(Mb) quenced finished 

Microbial 
genomes 
(-11) 

E coli 
Yeast 
Nematode 
Drosophila 
Mouse 
Human 

0.6-
4.2 

4.6 
13 

100 
130 

3000 
3000 

0.6-
4.2 

4.6 
13 
71 
8 
6 

60 

100 

100 
100 
71 
6 
0.2 
2 
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cant advance in clone library construction 
for physical mapping and large-scale se- 
quencing was the development of the bac- 
terial artificial chromosome (BAC) vector 
in 1992. BAC vectors stably propagate 
DNA with insert size from 80 to 300 kb 
(6) .  

Large-scale sequencing. Beginning with a 
source clone, most large-scale sequencing 
centers use the following stens for se- - 
quence determination: randomly frag- 
menting the source clone into small 
(- 1500 base pairs) pieces, subcloning the 
small pieces into a sequence-ready vector, 
sequencing 10 to 30 subclones per kilobase 
of the source clone (71, and assembling - 
the overlapping sequence reads into a con- 
tiguous multiple sequence alignment from 
which a consensus sequence can be in- 
ferred from the highest quality reads. 

The  develooment of the automated flu- 
orescent sequencer in the mid-1980s made 
high throughput genomic sequencing pos- 
sible (8). One  Perkin-Elmer Applied Bio- 
systems 377 sequencer can produce two 
runs per day of sequence reads averaging 
750 bases in length. Each run produces 64 
reads (soon to be 96 reads). Improvements 
in the sequencing chemistries (better 
polymerases and higher sensitivity dyes) 
have resulted in higher quality, more ac- 
curate sequence data. Finally, more pow- 
erful colnputers combined with more so- 
phisticated assembly programs have facil- 
itated the determination of a consensus 
sequence from a given set of sequence 
reads. Using current sequencing method- 
ologies, several laboratories are now pro- 
ducing contiguous stretches of human se- 
quence in the 300-kb to 1.5-Mb range (1 ). 

Sequence analysis. Extensive databases 
of sequences obtained from expressed 
genes and genomic clones from hundreds 
of organisms have been assembled and 
maintained by the National Center for 
Biotechnology Information (NCBI), Ge- 
nome Sequence Data Bank (GSDB), Eu- 
ropean Molecular Biology Laboratory 
(EMBL), and the DNA Data Bank of Ja- 
pan (DDBJ). Powerful search engines, ac- 
cessible via Web sites, electronic mail, or 
direct connection to a server and database 
have enabled biologists to  query the se- 
auence data in the context of manv dif- 
fkrent analyses, including gene finding, 
protein motif identification, regulatory 
motif analysis, identification of repeated 
sequences, similarity analyses, nucleotide 
compositional analyses, and cross-species 
comparisons. The  explosion of data pro- 
duced by the Human Genome Project has 
called forth the creation of a new disci- 
pline-bioinformatics, whose focus is on 
the acquisition, storage, analysis, model- 
ing, and distribution of the many types of 

information embedded in DNA and pro- 
tein sequence data. 

Genomes sequenced. The genomes of E .  
coli, yeast, and 11 microbes have been 
completely sequenced (9) .  Those of the 
worm, fruit fly, mouse, and human have 
been partially sequenced (10) (Table 1) .  
These sequences have dramatically altered 
the practice of genetics, molecular biolo- 
gy, developmental biology, immunology, 
and microbiology. 

Challenges for Sequencing the 
Human Genome 

Source material. Over the Dast decade, nu- 
merous clone libraries have been construct- 
ed from human sperm and cell lines. With 
these libraries, physical maps covering sig- 
nificant portions of the genome have been 
constructed, providing the source material 
for large-scale sequencing. Virtually all of 
the existing clone libraries must now be " 
discontinued, however, because the Na- 
tional Institutes of Health (NIH) and the 
Department of Energy (DOE) have man- 
dated that clone libraries come from donors 
that have given appropriate consent and are 
anonymous. This ruling is to prevent possi- 
ble discrimination against DNA donors or 
their relatives as information from their 
genomes becomes available. Sequencing 
centers must now rebuild physical maps 
from the new clone libraries that are being 
constructed with proper internal review 
board (IRB) approval. 

Clone ualidation. It has been argued that - 
the genome should be sequenced from 
multiple libraries so that no  individual's 
chromoso~nes are dominantly represented 
in the final sequence. Unfortunately, use 
of multiple libraries for selecting source 
clones undermines the ability of sequenc- 
ing centers to validate the fidelity of their 
clones. This is so because validation is 
judged by internal consistency among 
overlapping clones assayed by restriction 
enzyme fingerprinting. The  rate of poly- 
morphism in the human population is 
about one variation ner 500 base nairs with 
-15% of the variations being insertions or 
deletions ( I  I ) .  Sequence polymorphisms 
lead to differences in fingerprints among 
overlapping clones that cannot be distin- 
guished easily from differences in the fin- 
gerprints that arise from deletions or rear- 
rangements of artifactual clones. 

Thus, technical considerations argue - 
for using a minimum number of highly 
redundant clone libraries, and social con- 
siderations argue for diversifying the clone 
libraries. 

Minimum tiling paths of contiguous clones. 
A rate-limiting step in large-scale sequenc- 
ing today is the identification of a contigu- 

ous array of sequence-ready clones across 
each human chromosome from which a set 
of minimally overlapping clones (minimal 
tiling path) can be sequenced. This problem 
poses three challenges: (i) What is the most 
efficient means of obtaining local minimum " 
tiling paths (for example, those around each 
STS marker)? (ii) How can one identifv , ~, 

and cover the gaps between the existing 
chromosomal markers? and (iii) What can . , 

be done when clones are missing from a 
highly redundant library because of nonran- 
dom coverage or sequence-specific instabil- 
itv? For exam~le :  In the nematode, to 
adhieve contigiity in the clone map, both 
bacterially based and yeast-based cloning 
systems were required. Only about 80% of 
the genome is represented in bacterially 
based cosmid clones, and the average size of 
the cosmid tiling paths (contigs) is 150 to 
200 kb (12). Yeast-based clones (YACs) 
bridge the cosmid contigs, with only three 
gaps remaining in the 100-Mb genome. 
What will be required to achieve this level 
of contiguity in the human genome is sim- 
ply unclear. Closing gaps may well be the 
most difficult challenge for sequencing the 
human genome as a result of nonrandom- 
ness of the clone libraries and STS m a w  

Most sequencing centers currently build 
minimal tiling paths by relying on STSs or 
genetic markers that have already been 
mapped to a 200-kb to 2-Mb region of a 
chromosome (3,  4). With these markers as 
~ robes ,  clones are selected from a librarv 
and ordered by restriction enzyme finger- 
prints. To  obtain a minimal tiling path, 
gaps between contigs must be filled by ad- 
ditional rounds of library screening, after 
the identification of new markers from the 
contig ends. Because the rounds of library 
screening required to fill gaps are time- 
consuming, the construction of physical 
maps that contain minimal tiling paths may 
not be able to match the required through- 
put of sequencing, when the scale of se- 
quencing ramps up to 75 Mb/year or more 
for each sequencing center. 

In 1996, it was proposed that an exten- 
sive up-front characterization of a highly 
redundant BAC clone library would pro- 
vide a s i m ~ l e  and easilv automatable an- 
proach to ;he constructibn of minimal til- 
ing paths (13). This characterization in- 
volves arraying the clones into 384-well 
plates, fingerprinting each clone, and se- 
quencing the two vector-insert ends of each 
clone. With a library that covers the ge- 
nome 15-fold (300,000 clones), a BAC-end 
sequence (sequence-tagged connector, or 
STC) would be found in the genome on 
average every 5 kb. The STC sequences are 
ideal potential chromosomal markers for 
creating a more dense physical map. For 
example, 30,000 random STCs could be 
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localized to human chromosomes by radia- 
tion hybrid mapping at an average spacing 
of 100 kb. This would facilitate the identi- 
fication of gaps in the tiling path so addi- 
tional markers in the gap regions could be 
identified. 

Any sequenced BAC clone of 150 kb 
would permit the alignment of 30 STCs 
across the sequenced region. Indeed, the 
minimally overlapping clones at the 5' and 
3'  ends of any stretch of preexisting se- 
quence could be selected for sequencing, 
thereby extending the length of contiguous 
sequence. A comparison of the fingerprints 
from clones overlapping those selected for 
sequencing would provide the validation of 
genomic integrity. Because the STC mark- 
ers would be tied directly to characterized 
clones, local minimal tiling paths of clones 
could be rapidly identified by the computer. 

Sequence scale-up. T o  complete the ge- 
nome by 2005, starting in 1998, seven 
large-scale sequencing centers, for example, 
would each have to comwlete on the order 
of 75 Mb/year. Sequencing centers now 
have a throughput of 2 to 30 Mb/year. If the 
genome is to be sequenced on time and 
within budget, sequencing must become sig- 
nificantly faster and cheaper. Technology 
iinprovements in mapping, sequencing, and 
informatics leading to largely automated se- 
quencing production lines will be critical 
for this scale-up. Scaling-LIP sequencing re- 
quires laboratory information management 
systems (LIMS) that track clones and data 
~roduced  from the clones and also record 
parameters such as reagents, protocols, and 
machine ~erformance. Process-oriented 
quality measures will be essential for main- 
taining the efficiency of sequencing and the 
generation of data of adequate quality. 
Proper training of personnel is crucial to the 
success of a sequencing operation, as is the 
integration of effective new technologies in 
a manner that does not disrupt production. 

Standards. The current standards for se- 
quencing set by the NIH and DOE require 
that three conditions be met: ( i )  an  error 
rate of not more than 1 in 10,000; (ii) 
sequence contiguity, that is, sequence with- 
out gaps; and (iii) clone validation, that is, 
a demonstration that clones faithfully rep- 
resent the genome. The precision of se- 
quencing and, by inference, the probable 
error, is estimated by comparing the se- 

quences of overlapping clones. It is also 
gauged by programs that assign a quality 
measure to each base in a consensus se- 
quence. Contiguity is gauged by the se- 
quence assembly programs and by the suc- 
cessfill overlapping of sequences from adja- 
cent clones. Fingerprint colnparison of the 
clones against other overlapping clones, 
and in some cases directly against genolnic 
DNA, verifies clone integrity and validity 
(but see the discussion under "Clone vali- 
dation" above). 

Sequencing centers are challenged to - - 
meet these standards in the context of a 
high-throughput, largely automated factory- 
style operation. To  date, sequencing opera- 
tions have relied on a oool of skilled and 
experienced "finishers" who examine data, 
resolve discrepancies between conflicting 
sequence reads, direct any required addi- 
tional sequencing, and evaluate the preci- 
sion of a consensus sequence by comparing 
its consistency with fingerprints and se- 
quences of overlapping clones. Finishing is 
made significantly easier when the overall 
quality of sequence reads is high (long 
reads, few errors or ambiguities). However, 
even with good data, there are usually gaps 
that must be filled, and often there are 
difficulties in the assemblv of seauence 
reads into the correct align;nent owkg  to 
the presence of repeats-two or more high- 
ly similar copies of a stretch of sequence. 
The process of finishing is inore difficult to 
automate than bulk sequencing and is, for 
many sequencing centers, the rate-limiting 
step of their sequencing operation. 

Dissemination o f  data to the community. 
Genome centers are currently required to 
release their data to the community in a 
timely manner. Currently, finished se- 
quence is available from four large data- 
bases (GenBank and GSDB in the United 
States; EMBL and DDDJ in Europe and 
Japan, respectively). Unfinished sequence 
is usually available and searchable from 
the H T G  (high-throughput genomes) di- 
vision of GenBank (and other databases) 
or the Web pages of the individual ge- 
nome centers, or both. Genome centers 
generally provide a minimum of annota- 
tion for finished sequence-identification 
of repeat sequences, similarity analyses, 
and some indication of the quality of the 
data. If the data are really to be useful to 

the b~olog~ca l  and medlcal comlnunltles, ~t " ' 
1s essential that blologlcal lnforlnatlon In ' 
these sequences be far more completely 
annotated In the filture. Indeed, the com- 
plete human genome sequence must be 
seen as a startlng polnt for new b~olog~ca l  
lnvestigatlons, not as an  end In ~tself. 
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