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Indirect immunofluorescence was done as de-
scribed 27).

Transfections were done as described [Z, Xia et al.,
J. Neurosci 16, 5425 (1995)].

In the experiments shown in Fig. 2A, the B-galacto-
sidase signal was detected with a mouse monoclo-
nal antibody to B-galactosidase (Promega) diluted
1:300, followed by a goat antibody to mouse immu-
noglobulin G (IgG) conjugated to Cy3 [Biological De-
tection Systems (BDS)]. The nestin signal was de-
tected with a rabbit antiserum to nestin (1:5000)
followed by a goat antibody to rabbit IgG conjugated
to Cy2 (BDS). The GFAP signal was detected with a
guinea pig anti-GFAP (Advanced ImmunoChemical)
diluted 1:500, followed by a donkey antibody to
guinea pig IgG conjugated to AMCA diluted 1:200
{(Jackson ImmunoResearch).

Cortical cultures (E17 + 3 DIV) were transfected with
a chimeric protein together with the GFAP luciferase
reporter gene [containing 1876 nucleotides of the 5’
regulatory region of the GFAP gene fused to the
luciferase gene in pGL3 (Promega)] and the EF-CAT
plasmid (containing the bacterial chloramphenicol
acetyltransferase downstream of the elongation fac-
tor 1o promoter) to serve as an internal control for
transfection efficiency. Lysates of transfected cul-
tures were left untreated or stimulated with the ap-
propriate ligand [EGF (30 ng/ml) or NT-3 (50 ng/ml)]
for 12 hours and were then analyzed for luciferase
(Promega kit) and CAT (Dupont kit) activities. Induc-
tion with CNTF treatment was determined after lucif-
erase activity was normalized with CAT activity in all
transient expression assays in which the GFAP pro-
moter was tested except in the case of transfections
with the TG series of chimeric proteins because NT-3
was found to influence expression of the control EF-
CAT gene.

Immunoprecipitations were done as described (26).
Protein lysates were immunoprecipitated with an an-
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tiserum to JAK1 [Upstate Biotechnology, Inc. (UBI)],
separated by SDS—polyacrylamide gel electrophore-
sis (PAGE), and immunocblotted with antibodies to
phosphotyrosine (PY20) (ICN) and 4G10 (UBI). Anti-
body binding was detected by ECL (Amersham) with
a secondary antibody conjugated to horseradish
peroxidase. Protein immunoblot analysis was done
as described [A. Bonni et al., Mol. Cell. Neurosci. 6,
168 (1995)].

43. The antibodies to phosphorylated STAT3 were gen-
erated as described (37).

44, The mouse monoclonal antibody to nestin was ob-
tained from the Developmental Studies Hybridoma
Bank maintained by the Department of Pharmacol-
ogy and Molecular Sciences, Johns Hopkins Uni-
versity School of Medicine, Baltimore, MD, and the
Department of Biological Sciences, University of
lowa, lowa City, under contract NO1-HD-62915
from the National Institute of Child Health and Hu-
man Development.

45. Similar results were obtained with the antibody to
phosphorylated STAT3 (75). CNTF also induced
STAT tyrosine phosphorylation in E14 + 0 DIV cor-
tical cultures (75).
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Peripheral and Cerebral Asymmetries in the Rat

Nicholas P. LaMendola and Thomas G. Bever*

Rats learn a novel foraging pattern better with their right-side whiskers than with their
left-side whiskers. They also learn better with the left cerebral hemisphere than with the
right hemisphere. Rotating an already learned maze relative to the external environment
most strongly reduces right-whisker performance; starting an already learned maze at
a different location most strongly reduces left-whisker performance. These results sug-
gest that the right-periphery-left-hemisphere system accesses a map-like representa-
tion of the foraging problem, whereas the left-periphery-right-hemisphere system ac-
cesses a rote path. Thus, as in humans, functional asymmetries in rats can be elicited
by both peripheral and cortical manipulation, and each hemisphere makes qualitatively
distinct contributions to a complex natural behavior.

Cercbral and peripheral sensory-motor asym-
metries in humans have been a central theo-
retical topic in cognitive neuroscience for
more than a century. Today’s theories of
asymmetries converge on three main ideas.
First, asymmetries can involve a general hemi-
sphere dominance for particular skills (1) [for
example, left hemisphere (LH) specialization
for language and right hemisphere (RH) for
vision]. Second, asymmetries involve an at-
tentional effect on the contralateral periphery
(2) (for example, superiority for many lan-
guage tasks in the right visual field and for
many visual tasks in the left visual field).
Third, although one hemisphere may be gen-
erally dominant for a particular behavioral
domain, each hemisphere still contributes a
specific kind of processing to it (3) {for exam-
ple, in vision the left hemisphere accesses
categorical information, and the right hemi-
sphere accesses metric information). There
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may be a general computational basis for such
functional hemispheric asymmetries. Recent
network models have shown that computa-
tional systems perform better on complex
problems if they segregate them into subprob-
lems that differ in a natural way; this segrega-
tion occurs automatically in systems with par-
tially segregated subsystems of different com-
putational configurations (4).

The general computational view of the
basis for asymmetries suggests that animals
other than humans may have behavioral
and cerebral asymmetries (5). Indeed, some
birds and simians have unique mechanisms
for specific communicative behaviors in the
left hemisphere (6). The rat offers a useful
case study for research relevant to the gen-
eral basis for human asymmetries; rats are
neither as biologically distant from humans
as birds nor as close as simians. Individual
rats, in fact, exhibit some neurophysiologi-
cal and behavioral asymmetries (7); howev-
er, there is scant evidence that rats as a
species have any behavioral asymmetries for
natural complex behaviors (8).

Qur first goal was to establish a popula-
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tion asymmetry in a peripheral input system
that the rat uses in normal behavior. In
humans, such investigations typically use
unilateral presentation of information to a
sensory modality, such as visual field or ear.
Whiskers are an important source of infor-
mation for rats; they use whisker informa-
tion to learn new pathways and environ-
ments, to discriminate textures, and to
make depth judgments (9). Accordingly,
this study manipulated access to informa-
tion from the right and left sets of whiskers
(RW and LW, respectively).

We used a laboratory instantiation of a
foraging task—learning an eight-arm radial
maze, in which the same five arms were
always baited (10). The rats first became
familiar with learning to find the five re-

Fig. 1. Paradigm and per- A
formance on novel maze Original maze
learning. (A) Rats were runin

daily 30-min sessions for a

total of 50 trials and were

trained to find food in the e
same five alleys of an eight-
arm maze (dots indicate
food locations). A given rat 50 trials 10-day
was always started pointing (57 days) interval

at the same alley (indicated

by arrow). After 10 days of rest, rats were given four daily six-trial

wards in one such maze. After a rest interval
of 10 days and with either the left whisker
or the right whisker anesthetized, they
learned another maze for 4 days. Rats with
right whisker intact made fewer learning
errors on the new maze than rats with left
whisker intact (Fig. 1) (11). This perfor-
mance asymmetry is an initial demonstra-
tion of a right peripheral superiority for a
complex natural behavior.

We next used a direct manipulation of
the cerebral hemispheres to show that there
is a corresponding left hemisphere superior-
ity. Rats were pretrained as before on an
initial maze and given the same 10-day rest
interval before they learned a new maze
over 4 days. Twenty minutes before each
daily session on the second maze, we in-

B
New maze

-

2

S

w

4 days
Left Right Left Right
Whiskers Hemishere
Side intact

blocks to find food in five alleys of a similar maze, in a new room

and with a different baiting pattern. Immediately before each training session on the new maze, one set
of 15 rats had the base of either the LW or the RW locally anesthetized (22); another set of 13 rats had
either the LH or the RH briefly depressed by KCI (23). (B) The interaction of side intact by type of
treatment was significant [F(1,29) = 14.08, P < 0.01] (24).

A

Original maze

50 trials

(5-7 days) Trial 1

Original maze

3 — St

50 trials

Trial 1
(5-7 days)

Random start arm across trials

-

Trial 2

Random maze rotation across trials b
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w
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Errors
o
1

...Trial 6
Left Right

Whiskers intact

Errors
B
L

...Trial 6
Left Right

Whiskers intact

Fig. 2. Paradigm and performance on distorted mazes. (A) Intact rats were trained in daily 30-min
sessions for 50 trials to find food in the same five alleys of a maze (dots indicate food locations). They
were started at the same initial alley on every trial (indicated by arrow) (25). On the day after completion
of the 50-trial training sequence, rats were run for a single six-trial session on-the same maze, now
distorted in one of two ways. For one group of 28 rats, the maze remained the same as it was during
training, but the rat was repointed to start facing a different alley on each trial; for another group of 14
rats, the entire maze (and start alley) was pseudo-randomly rotated to a different position before each
trial. Immediately before this session, the base of the LW or the RW was anesthetized (27). (B) The
interaction of type of maze distortion by whisker side was significant [F{1,40) = 13.85, P < 0.001] (26).
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duced a mild cortical spreading depression
in one hemisphere. Rats with the left hemi-
sphere intact made fewer errors than rats
with the right hemisphere intact (Fig. 1)
(12). This difference in errors establishes
the fact that for this learning task there is a
superiority of the left hemisphere.

The two results together converge on
demonstrating a LH-RW system superiority
over the RH-LW system for learning a for-
aging pattern (13). Accordingly, it appears
that rat behavior has both a peripheral
dominance and a corresponding contralat-
eral cortical dominance (14).

Is the LH-RW system superiority over
the RH-LW system merely quantitative or
do the two systems access qualitatively dif-
ferent representations? To explore this is-
sue, we adopted a widely accepted distinc-
tion between map-based and route-based
representations of a learned foraging pat-
tern. In the map representation, an allocen-
tric, declarative map codes goal locations
on the basis of their relation to landmarks
(15). In the route representation, an ego-
centric, procedural rote route marks a fixed
path from the starting location to each
successive goal (16).

One aspect of the learning pattern sug-
gests that the LH-RW system learns a map,
whereas the RH-LW system learns a mem-
orized route. The learning inferiority of the
RH-LW system is primarily due to the rel-
atively large number of working memory
errors—reentering an alley where the re-
ward had already been found and eaten
(Table 1). This error pattern follows from
the different options the two kinds of maze
representations offer to an animal when it
misses a baited alley. By hypothesis the
LH-RW map system can find the missing
alley by accessing a map representation of
rewards, but the RH-LW route system can
return to its rote path only from the begin-
ning. The result is that the RH-LW system
must reenter more alleys to find the missing
reward, whereas the LH-RW system can

Table 1. Number of different types of errors and
adjacent alley choices in leaming a new maze
described in Fig. 1. Overall error rates were sepa-
rated into reference memory errors (entering a
never baited am), and working memory errors
(reentering an arm that had been baited at the
beginning of the trial). The three-way interaction
between treatment, side intact, and emor type
was significant [F(2,60) = 4.53, P < 0.01] 27).

Reference Working
Group memory memory
errors errors
LW intact 2.14 3.01
RW intact 2.09 214
LH intact 1.63 1.08
RH intact 1.87 1.59
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more directly locate the missing alley.

We used the whisker-anesthetization
technique with a two-part study to directly
test the hypothesis that the LH-RW ac-
cesses a map and the RH-LW accesses a
route. In each case, rats were trained on
the same initial maze as before with both
whisker sets intact. In the repointing con-
dition, training continued for an addition-
al day on the same maze, but on that day
the rat was pointed at a different starting
alley on every trial. Rats had their left
whisker or right whisker anesthetized just
before running on the additional day. Per-
formance on the repointing condition
start alley was better with the right whis-
ker intact than with the left whisker intact
(Fig. 2). This supports the view that the RH-
LW system accesses a rote-route representa-
tion, which is more disrupted than a map
representation by starting at a new alley.

In the maze-rotation condition, differ-
ent rats had standard training on the ini-
tial maze, and training then continued for
an additional day; however, on that day,
the entire maze was randomly rotated to a
new position before each trial. Rats again
had their whiskers unilaterally anesthe-
tized just before running on the additional
day. Contrary to the repointing paradigm,
performance on the rotated maze was
worse in rats with the right whisker intact
than in rats with the left whisker intact
(Fig. 2). This supports the view that the
LH-RW system accesses a map represen-
tation, which is disrupted more than a
rote-route representation by reorienting
the maze in the room space (17).

These findings have several implica-
tions for current research. At a practical
level, they establish the rat as a potentially
complete model of cerebral dominance,
with contralaterally linked cortical and
peripheral qualitative asymmetries that
can be easily elicited. Second, although
the hippocampus is the most carefully
studied structure involved in spatial be-
havior in rats (I18), our results demon-
strate important differential roles of the
neocortical hemispheres as well (19). Fi-
nally, our results confirm that even spatial
behavior in the rat is not uniquely associ-
ated with one hemisphere or the other.
Rather, the two hemispheres provide dif-
ferent kinds of representations of spatial
tasks. This is consistent with the view that
the hemispheres make different kinds of
computational contributions to many be-
haviors in humans. It is specifically con-
sistent with a recent differentiation of spa-
tial tasks in humans, which showed that
global and metric aspects of a spatial array
are accessible in the right hemisphere, and
specific local aspects and features are ac-
cessible in the left hemisphere (20).
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turned predominantly right when they were exiting
one alley and going into the next alley on the second
maze. The data suggest that the LH-RW superiority
is most strongly elicited in those rats that chose to
turn right in the second maze. If future research con-
firms this trend, it will be consistent with our general
claims. If the LH-RW system dominates the acquisi-
tion of a new maze, the animals are making most
critical use of right-peripheral information, informa-
tion that is most salient when they make a right turn
to go to the next baited alley. A related issue is the
possibility that each rat has an individual turn-direc-
tion bias, which interacts with the unilateral condi-
tions. QOur original study was not designed to control
for this; rats were assigned to particular unilateral
experimental conditions before they ran on the first
maze. In fact, on the initial maze the 32 experimental
animals exhibited a slight population bias to turn right
when exiting from one alley and going into the next.
However, there was no correlation between tumning
bias direction in maze 1 and performance in maze 2
either across all conditions (72 = 0.06) or within each
of the experimental conditions. Also, by using turn
bias on the initial maze as a measure, all unilateral
conditions had about the same ratio of right-turning
versus left-turning rats. The potentialimportance ofa
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J. O'Keefe, Hippocampus 1, 230 (1991).

B. L. McNaughton et al., J. Cognit. Neurosci. 3, 190
(1991); R. L. Gallistel and A. E. Cramer, J. Exp. Biol.
199, 211 (1996); D. S. Olton, in (70).

. We also ran rats without any whisker anesthesia on

the same paradigms. After they leamed the initial
maze, the rats were subjected to the same Halo-
thane procedure as the whisker-anesthetized condi-
tions (22) but without any unilateral anesthesia. In the
repointed start alley condition, five bilaterally intact
rats then performed better than rats with either uni-
lateral whisker condition; this suggests that rats in
both unilateral conditions are somewhat affected by
a change in the start alley. In the maze-rotation con-
dition, five bilaterally intact rats performed better than
the RW-intact rats, but they performed the same as
the LW-intact rats. This suggests that the intact an-
imal can learn to ignore the maze rotation, whereas
the isolated LH-RW system cannot.

. J. O'Keefe and L. Nadel, The Hippocampus As a

Spatial Map (Clarendon Press, Oxford, 1978); M. A.
Wilson and B. L. McNaughton, Science 261, 1055

20.

21.

22,

(1995); N. J. Cohen and H. Eichenbaum, Memory,
Amnesia, and the Hippocampal System (MIT Press,
Cambridge, MA, 1993); E. L. Jarrard, Behav. Neural
Biol. 60, 9 (1993).

. Many lesion studies support the role of the posterior

parietal cortex [B. V. DiMattia and R. P. Kesner, Be-
hav. Neurosci. 102, 397 (1988)] and ventrolateral
orbital cortex [J. V. Corwin, M. Fussinger, R. C.
Meyer, V. R. King, R. L. Reep, Behav. Brain Res. 61,
79 (1994)] in the processing of allocentric space and
the medial agranular cortex [B. Kolb, in The Cerebral
Cortex of the Rat, B. Kolb and R. C. Tees, Eds. (MIT
Press, Cambridge, MA, 1990), pp. 437-458] and
prefrontal cortex [R. P. Kesner et al., Behav. Neuro-
sci. 103, 956 (1989)] in egocentric space.

M. Banich, Neuropsychology: The Neural Bases of
Mental Function (Houghton-Mifflin, Boston, 1997),
chap. 6; H. D. Brown and S. M. Kosslyn in Brain
Asymmetry, R. J. Davidson and K. Hugdahl, Eds.
(MIT Press, Cambridge, MA, 1995), pp. 77-97. Ata
general level, prior research suggests that spatial
ability is dominant in the RH of humans, which ap-
pears to be the opposite of our findings in rats [B.
Milner, Neuropsychologia 3, 317 (1965); M. Habib
and A. Sirigu, Cortex 23, 73 (1987)]. However, al-
most all research on humans has been devoted to
simple perceptual problems in external space in-
stead of personal way finding. In fact, the LH has
been implicated in Euclidian geometrical processing
[L. Franco and R. W. Sperry, Neuropsychologia 15,
107 (1977); E. DeRenzi, Disorders of Space Explo-
ration and Cognition (Wiley, New York, 1982); Z.
Mehta and F. Newcombe, Cortex 27 153 (1991)],
and both hemispheres contribute to personal way-
finding skills [G. Ratcliff and F. Newcombe, J. Neurol.
Neurosurg. Psychiatr. 36, 448 (1973); E. J. Maguire,
T. Burke, J. Phillips, H. Staunton, Neuropsychologia
34, 993 (1996)].

The left-right contrasts for working memory errors
were significant for whiskers [F(1,13) = 7.94, P <
0.01] and for hemisphere [F(1,15) = 4.73, P < 0.05]
conditions. Contrasts in both conditions for refer-
ence memory errors were not significant. Note that
reference memory errors plus working memory er-
rors does not add up to the number of overall errors.
This is because the overall error measure includes
cases when the rat reenters an always unbaited arm;
we omitted those from this differential analysis be-
cause such errors are simultaneously reference and
working memory errors.

The procedure was adapted from the technique de-
scribed in D. H. Thor and W. B. Ghiselli, Psychol.
Rep. 33, 815 (1973). The rat was first lightly anesthe-
tized by inhalation of Halothane; then 0.2 ml of 2%
lidocaine with epinephrine was subcutaneously in-
jected into the mystacial vibrissal region on one side.
The operational test for numbing the whiskers was
that they stopped twitching. Each rat was always
injected on the same side of the whiskers across all
four daily experimental sessions. We unilaterally
anesthetized the whiskers instead of shaving them
because prior research showed that rats accommo-
date quickly to a permanent loss of whiskers: H.
Milani, H. Steiner, J. P. Huston, Behav. Neurosci.

23.

24.

25.

26.

27.
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103, 1067 (1989). We trained rats on the second
maze for only 4 days because of concern that re-
peated injections would cause discomfort.

Before rats were trained on the initial maze, 6-mm can-
nulae with a 4-mm internal diameter were affixed above
a 2-mm hole in the skull 3- to 4-mm off the midline,
midway between lambda and bregma—roughly above
the parietotemporal cortex. Thirty minutes before each
daily second maze learning session, a cotton pellet
soaked in a 6% KCl solution was placed on the dura in
the cannula above one hemisphere, and a pellet with
saline solution was placed in the other cannula [A. A. P.
Ledo, J. Neurophysiol. 7, 359 (1944); B. Grafstein, ibid.
19, 154 (1955)]. Prior studies characteristically used
high KCI concentrations, at least 20%. We used a 6%
solution to reduce the possibility of a motor hemiplegia
or sensory neglect—all animals with KCl administered
still performed the edge-paw placement test bilaterally
and showed no sign of unilateral dysfunction. Recording
of cortical electroencephalograms with two rats sug-
gests that with our procedure the active depolarization
period lasts 5 to 10 min. Thus, by the time rats ran in the
maze, active depolarization may have been finished; the
treated hemisphere may have been in a state of mid
edema and consequent mild ischemia.

Rats with LW intact made significantly more learning
errors than rats with RW intact [F{1,13) = 8.05, P <
0.01]. Rats with LH intact made fewer errors than
rats with RH intact [F(1,15) = 5.96, P < 0.01]. Each
of three distinct normal maze baiting pattemns in
maze 2 elicited the same overall superiority of the
LH-RW system.

With the same initial maze as In the previous exper-
iment, we tested 56 male Sprague-Dawley albino
rats (90 to 120 days old) on a variation of the selec-
tively baited radial maze task.

Rats with LW intact made marginally more errors
than rats with RW intact when the starting position
was changed on each trial [F{1,26) = 2.20, P < 0.1].
However, the difference for working memory errors
alone was significant [F(1,26) = 4.20, P < 0.05]. Rats
with RW intact made more errors than rats with LW
intact when the maze was rotated to a new position
before each trial [F(1,12) = 4.05, P < 0.05].
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