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Peripheral and Cerebral Asymmetries in the Rat 
Nicholas P. LaMendola and Thomas G. Bever* 

Rats learn a novel foraging pattern better with their right-side whiskers than with their 
left-side whiskers. They also learn better with the left cerebral hemisphere than with the 
right hemisphere. Rotating an already learned maze relative to the external environment 
most strongly reduces right-whisker performance; starting an already learned maze at 
a different location most strongly reduces left-whisker performance. These results sug- 
gest that the right-periphery-left-hemisphere system accesses a map-like representa- 
tion of the foraging problem, whereas the left-periphery-right-hemisphere system ac- 
cesses a rote path. Thus, as in humans, functional asymmetries in rats can be elicited 
by both peripheral and cortical manipulation, and each hemisphere makes qualitatively 
distinct contributions to a complex natural behavior. 

Cerebral and peripheral sensory-motor asym- 
metries in humans have been a central theo- 
retical tonic in coenitive neuroscience for 

0 

more than a century. Today's theories of 
asvmmetries converge on three main ideas. " 

First, asymmetries can involve a general hemi- 
sphere dominance for particular skills (1)  [for 
example, left hemisphere (LH) specialization 
for language and right hemisphere (RH) for 
visionl. Second, asvmmetries involve an  at- 
tentional effect on ;he contralateral periphery 
(2)  (for example, superiority for many lan- 
guage tasks in the right visual field and for 
many visual tasks in the left visual field). 
Third, although one hemisphere may be gen- 
erally dominant for a particular behavioral 
domain, each hemisohere still contributes a 
specific kind of processing to it (3)  (for exam- 
ple, in vision the left hemisphere accesses 
categorical information, and the right hemi- 
sphere accesses metric information). There 

may be a general computational basis for such 
fi~nctional hemispheric asymmetries. Recent 
network models have shomn that computa- 
tional systems perform better 011 complex 
problems if they segregate them into subprob- 
lems that differ in a natural way; this segrega- 
tion occurs automatically in systems mith par- 
tially segregated subsystelns of different com- 
putational configurations (4). 

T h e  general computational view of the  
basis for asymmetries suggests that animals 
other than humans may have behavioral 
and cerebral asymmetries (5). Indeed, some 
birds and simians have unique lnechanis~ns 
for specific communicative behaviors in the  
left hemisphere (6). T h e  rat offers a u s e f ~ ~ l  
case study for research relevant to the gen- 
eral basis for human asymmetries; rats are 
neither as biologically distant from humans 
as birds nor as close as simians. Individual 
rats, i n  fact, exhibit some neurophysiologi- 
cal and hehavioral asymmetries (?);'how&- 

N. P. LaMendola, Department of Psychology, Univers~ty 
of Ar~zona. Tucson AZ 85721. USA. er, there is scant evidence that rats as a 
T. G. Bever Program In Cognitive Science Un~versity of species have any behavioral asylnlnetries for 
Arzona. Tucson, AZ 85721, USA. natural colnplex behaviors (8). 
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tion asymmetry in a peripheral input system 
that the rat uses in normal behavior. In 
humans, such investigations typically use 
unilateral presentation of information to a 
sensory modality, such as visual field or ear. 
Whiskers are an important source of infor- 
mation for rats; they use whisker informa- 
tion to learn new pathways and environ- 
ments, to discriminate textures, and to 
make depth judgments (9). Accordingly, 
this study manipulated access to informa- 
tion from the right and left sets of whiskers 
(RW and LW, respectively). 

We used a laboratory instantiation of a 
foraging task-learning an eight-arm radial 
maze, in which the same five arms were 
always baited (10). The rats first became 
familiar with learning to find the five re- 

Fig. 1. Paradigm and per- 
formance on novel maze 
learning. (A) Rats were run in 
daily 30-min sessions for a 
total of 50 trials and were 
trained to find food in the 
same five alleys of an eight- 
arm maze (dots indicate 
food locations). A given rat 
was always started pointing 

A 
Original maze 

50 trials loday 
(5-7 days) interval 

wards in one such maze. After a rest interval 
of 10 days and with either the left whisker 
or the right whisker anesthetized, they 
learned another maze for 4 days. Rats with 
right whisker intact made fewer learning 
errors on the new maze than rats with left 
whisker intact (Fig. 1 ) ( 1 1 ). This perfor- 
mance asymmetry is an initial demonstra- 
tion of a right peripheral superiority for a 
complex natural behavior. 

We next used a direct manipulation of 
the cerebral hemispheres to show that there 
is a corresponding left hemisphere superior- 
itv. Rats were metrained as before on an 
initial maze and given the same loday rest 
interval before they learned a new maze 
over 4 days. Twenty minutes before each 
daily session on the second maze, we in- 

New maze 

4 days 
Left Right 

at the same alley (indicated Whiskers Hemishere 
by arrow). After 10 days of rest, rats were given four daily six-trial Side intact 
blocks to find food in five alleys of a similar maze, in a new room 
and with a different baiting pattern. Immediately before each training session on the new maze, one set 
of 15 rats had the base of either the LW or the RW locally anesthetized (22); another set of 13 rats had 
either the LH or the RH briefly depressed by KC1 (23). (B) The interaction of side intact by type of 
treatment was significant [F(1,29) = 14.08, P < 0.011 (24). 

A 
Original maze Random start arm across trials - ~@?JC/flt 

50 trials 
(5-7 days) 

Trial 1 Trial 2 . . .Trial 6 0 
Left R~ght 

Whiskers intact 

duced a mild cortical spreading depression 
in one hemisphere. Rats with the left hemi- 
sphere intact made fewer errors than rats 
with the right hemisphere intact (Fig. 1) 
(12). This difference in errors establishes 
the fact that for this learning task there is a 
superiority of the left hemisphere. 

The two results together converge on 
demonstrating a LH-RW system superiority 
over the RH-LW system for learning a for- 
aging pattern (13). Accordingly, it appears 
that rat behavior has both a peripheral 
dominance and a corresponding contralat- 
era1 cortical dominance (14). 

Is the LH-RW system superiority over 
the RH-LW system merely quantitative or 
do the two systems access qualitatively dif- 
ferent representations? To explore this is- 
sue, we adopted a widely accepted distinc- 
tion between map-based and- route-based 
representations of a learned foraging pat- 
tern. In the map representation, an allocen- 
tric, declarative map codes goal locations 
on the basis of their relation to landmarks 
(15). In the route representation, an ego- 
centric, procedural rote route marks a fixed 
path from the starting location to each 
successive goal (1 6). 

One aspect of the learning pattern sug- 
gests that the LH-RW system leams a map, 
whereas the RH-LW system leams a mem- 
orized route. The learning inferiority of the 
RH-LW system is primarily due to the rel- 
atively large number of working memory 
errors-reentering an alley where the re- 
ward had already been found and eaten 
(Table 1). This error pattern follows from 
the different o~tions the two kinds of maze 
representations offer to an animal when it 
misses a baited alley. By hypothesis the 
LH-RW map system can find the missing 
alley by accessing a map representation of 
rewards, but the RH-LW route system can 
return to its rote path only from the begin- 
ning. The result is that the RH-LW system 
must reenter more alleys to find the missing 
reward, whereas the LH-RW system can 

Original maze Random maze rotation across trials - 
Table 1. Number of different types of errors and 
adjacent alley choices in learning a new maze 
described in Fig. 1. Overall error rates were sepa- 
rated into reference memory errors (entering a 
never baited arm), and working memory errors 

50 trials Trial 1 Trial 2 . . .Trial 6 (reentering an arm that had been baited at the 
(5-7 days) Left ~ ~ g h t  beginning of the trial). The three-way interaction 

between treatment, side intact, and error type 
Whiskers intact was significant [F(2,60) = 4.53, P < 0.011 (21). 

Fig. 2 Paradigm and performance on distorted mazes. (A) Intact rats were trained in daily 30-min 
sessions for 50 trials to find food in the same five alleys of a maze (dots indicate food locations). They Reference Working 
were started at the same initial alley on every trial (indicated by arrow) (25). On the day after completion Group memory memory 
of the 50-trial training sequence, rats were run for a single six-trial session on the same maze, now errors errors 
distorted in one of two ways. For one group of 28 rats, the maze remained the same as it was during 
training, but the rat was repointed to start facing a different alley on each trial; for another group of 14 LW intact 2.14 3.01 
rats, the entire maze (and start alley) was pseudo-randomly rotated to a different position before each RW intact 2.09 2.14 
trial. Immediately before this session, the base of the LW or the RW was anesthetized (21). (B) The Kizai 1.63 1.08 
interaction of type of maze distortion by whisker side was significant [F(1,40) = 13.85, P < 0.0011 (26). 1.87 1.59 
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more directly locate the missing alley. 

We used the whisker-anesthetization 
technique with a two-part study to directly 
test the hypothesis that the LH-RW ac
cesses a map and the RH-LW accesses a 
route. In each case, rats were trained on 
the same initial maze as before with both 
whisker sets intact. In the repointing con
dition, training continued for an addition
al day on the same maze, but on that day 
the rat was pointed at a different starting 
alley on every trial. Rats had their left 
whisker or right whisker anesthetized just 
before running on the additional day. Per
formance on the repointing condition 
start alley was better with the right whis
ker intact than with the left whisker intact 
(Fig. 2). This supports the view that the RH-
LW system accesses a rote-route representa
tion, which is more disrupted than a map 
representation by starting at a new alley. 

In the maze-rotation condition, differ
ent rats had standard training on the ini
tial maze, and training then continued for 
an additional day; however, on that day, 
the entire maze was randomly rotated to a 
new position before each trial. Rats again 
had their whiskers unilaterally anesthe
tized just before running on the additional 
day. Contrary to the repointing paradigm, 
performance on the rotated maze was 
worse in rats with the right whisker intact 
than in rats with the left whisker intact 
(Fig. 2). This supports the view that the 
LH-RW system accesses a map represen
tation, which is disrupted more than a 
rote-route representation by reorienting 
the maze in the room space (17). 

These findings have several implica
tions for current research. At a practical 
level, they establish the rat as a potentially 
complete model of cerebral dominance, 
with contralateral^ linked cortical and 
peripheral qualitative asymmetries that 
can be easily elicited. Second, although 
the hippocampus is the most carefully 
studied structure involved in spatial be
havior in rats (18), our results demon
strate important differential roles of the 
neocortical hemispheres as well (19). Fi
nally, our results confirm that even spatial 
behavior in the rat is not uniquely associ
ated with one hemisphere or the other. 
Rather, the two hemispheres provide dif
ferent kinds of representations of spatial 
tasks. This is consistent with the view that 
the hemispheres make different kinds of 
computational contributions to many be
haviors in humans. It is specifically con
sistent with a recent differentiation of spa
tial tasks in humans, which showed that 
global and metric aspects of a spatial array 
are accessible in the right hemisphere, and 
specific local aspects and features are ac
cessible in the left hemisphere (20). 
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rat and the untreated rat are accessing the same 
level of learning capacity. The very poor overall per
formance of rats in each anesthetized whisker con
dition may reflect aversion to having half the whiskers 
numbed; in contrast, prior research has suggested 
that KCI-induced cortical spreading depression is 
not aversive [V. I. Koroleva and J. Bures, Neurosci. 
Lett. 149, 153 (1993)]. Another informative control 
condition would be to anesthetize both whisker sets. 
We tried this with four animals. They could move 
through the maze but had great difficulty in the last 
stages of locating the food rewards; the result was 
that they did not eat the rewards and so cannot be 
compared with rats in the other conditions. 

14. Prior research suggests that rats adopt turning bias
es, which might interact with our unilateral interven
tion conditions [M. Ammassari-Teule and A. Caprioli, 
Behav. Brain Res. 17, 9 (1985)]. About half the rats 

www.sciencemag.org • SCIENCE • VOL. 278 • 17 OCTOBER 1997 485 

http://www.sciencemag.org


turned predominantly right when they were ex~ting 
one alley and gong Into the next alley on the second 
maze The data suggest that the LH-RW superorty 
is most strongly elic~ted In those rats that chose to 
turn right In the second maze If future research con- 
frms ths  trend, tw i l l  be consstent w t h  our general 
claims, If the LH-RW system domnates the acquis- 
tion of a new maze, the anmals are makng most 
cr~t~cal use of right-per~phera nformation, informa- 
tion that IS most salient when they make a r~ght turn 
to go to the next baited alley. A related issue is the 
possibility that each rat has an individual turn-direc- 
tion bias, which interacts with the unilateral condi- 
tions. Our original study was not designed to control 
for this: rats were assigned to particular unilateral 
experimental conditions before they ran on the first 
maze, In fact, on the initial maze the 32 experimental 
animals exhibited asight population bias to turn right 
when exiting from one alley and going into the next. 
However, there was no correlation between turning 
bias direction in maze 1 and performance in maze 2 
either across a conditions (r2 = 0.06) or within each 
of the experimental conditions. Also, by using turn 
bias on the initial maze as a measure, a unilateral 
conditions had about the same ratio of right-turning 
versus eft-turning rats. The potential impoitance of a 
turning-bias confound prompted us to replicate the 
initial unilateral whisker study with explicit attention to 
turn bias and performance on the initial maze. We 
trained 16 rats on the initial maze as before. Then we 
assigned 8 rats to the LW- and 8 rats to the RW- 
anesthetized condition, so that each cond~tion had 
the same propoition of rats showing a right-turn bias 
on the initial maze; we also arranged the two groups 
so that their asymptotic performance on the initial 
maze was within a few percentage points. The maze 
learning for 4 days showed the same pattern as in our 
original study. Rats in each condition learned the 
maze, but rats with RW intact learned the second 
maze w~ th  fewer errors than rats with LW intact. Also, 
in this study, more animals with LW intact failed to find 
a five rewards within the allotted time on a given trial. 

15. J. O'Keefe, Hippocampus 1 ,  230 (1991). 
16. B. L. McNaughton etal. , J. Cognit. Neurosci. 3, 190 

(1991); R. L. Gais te  and A. E. Cramer, J. Exp. 6/01. 
199, 21 1 (1996); D. S. Olton, in (10). 

17. We also ran rats without any whisker anesthesia on 
the same paradigms. After they learned the initial 
maze, the rats were subjected to the same Halo- 
thane procedure as the whisker-anesthetized condi- 
tons (22) but without any unatera anesthesia, In the 
repointed start alley condition, five bilaterally intact 
rats then performed better than rats with either uni- 
lateral whisker condition; this suggests that rats In 
both unilateral condtions are somewhat affected by 
a change in the start alley, In the maze-rotation con- 
dition, fve bilaterally intact rats performed better than 
the RW-intact rats, but they performed the same as 
the LW-intact rats. This suggests that the intact an- 
m a  can learn to ignore the maze rotation, whereas 
the isolated LH-RW system cannot. 

18. J. O'Keefe and L. Nadel, The Hippocampus As a 
Spatial iWap (Carendon Press, Oxford, 1978); M. A. 
Wilson and B. L. McNaughton, Science 261, 1055 

(1995); N. J. Cohen and H. E~chenbaum, Memoy.  
Amnesia, and the Hippocampal System (MT  Press, 
Cambridge MA, 1993); E. L. Jarrard, Behav. Neural 
5101. 60, 9 (1 993). 

19. Many e s o n  studies suppoit the role of the posterior 
parietal cortex [B. V. DiMatta and R. P. Kesner, Be- 
ha\/. Neurosci. 102, 397 (1988)l and ventrolateral 
o rb~ta  cortex [J. V. Corwin, M. Fussinger. R. C. 
Meyer, V. R. K~ng, R. L. Reep, Behav. Brain Res. 61, 
79 (1 994)] in the processing of alocentric space and 
the medial agranular cortex [B. Kolb, 'n The Cerebral 
Coitexof the Rat. B .  Kolb and R. C.  Tees, Eds. ( M T  
Press, Cambridge, MA, 1990), pp. 437-4581 and 
prefronta coitex [R. P. Kesner et a/. , Behav. Neuro- 
sci. 103, 956 (1 989)] in egocentric space. 

20. M. Banich, Neuropsychology: The Neural Bases of 
iWental Function (Houghton-Mifflin, Boston, 1997), 
chap. 6; H. D. Brown and S. M. Kosslyn in Brain 
Asymmety, R. J. Davidson and K. Hugdahl, Eds. 
( M I  Press, Cambridge, MA, 1995), pp. 77-97. At a 
general level, prlor research suggests that spatial 
ability is dominant in the RH of humans, which ap- 
pears to be the opposite of our findings in rats [B. 
Miner, Neuropsycholog~a 3, 31 7 (1 965); M. Habib 
and A. Sirigu, Coitex 23, 73 (1987)l. However, al- 
most a research on humans has been devoted to 
simple perceptual problems in external space in- 
stead of personal way finding, n fact, the LH has 
been implicated in Euclidian geometrical processing 
[L. Franco and R. W. Sperry, Neuropsychologia 15. 
107 (1 977); E. DeRenzi, Disorders of Space Explo- 
ration and Cognition (Wiley, New York, 1982); 2, 
Mehta and F. Newcombe, Cortex 27 153 (1991)], 
and both hemispheres contribute to personal way- 
finding skills [G. Ratciff and F. Newcombe, J. Neurol. 
Neurosurg. Psychiatr 36, 448 (1 973); E. J. Maguire, 
T. Burke, J. Phillips, H. Staunton, Neuropsychologia 
34, 993 (1 996)l. 

21. The left-right contrasts for working memory errors 
were significant for whiskers [F(1 , I  3) = 7.94, P < 
0.011 and for hemisphere [F(1,15) = 4.73, P < 0.051 
conditions. Contrasts in both conditions for refer- 
ence memory errors were not significant. Note that 
reference memory errors plus working memory er- 
rors does not add up to the number of overall errors. 
This is because the overall error measure includes 
cases when the rat reenters an always unbaited arm; 
we omitted those from this differential analysis be- 
cause such errors are simultaneously reference and 
workng memory errors. 

22. The procedure was adapted from the technique de- 
scribed in D. H. Thor and W. B. Ghiseli, Psychol. 
Rep. 33, 81 5 (1 973). The rat was first lightly anesthe- 
tized by inhalation of Halothane; then 0.2 m of 2% 
idocaine with epinephrine was subcutaneously in- 
jected into the mystacia vibrissa region on one side. 
The operational test for numbing the whiskers was 
that they stopped twitching. Each rat was always 
injected on the same side of the whiskers across all 
four daily experimental sessions. We unilaterally 
anesthetized the whiskers instead of shaving them 
because prior research showed that rats accommo- 
date quickly to a permanent loss of whiskers: H. 
M~lani, H. Steiner, J. P. Huston, Beha\/. Neurosci. 

103. 1067 (1989) We tra~ned rats on the second 
maze for only 4 days because of concern that re- 
peated injectons would cause dscomfort. 

23. Before rats were trained on the i n t a  maze, 6-mm can- 
nulae wth a 4-mm Internal dameter were affxed above 
a 2-mm hole n the skull 3- to 4-mm off the mdine, 
mdway between lambda and bregma-roughly above 
the paretotemporal coltex. Thlty minutes before each 
daily second maze learning sesslon, a cotton pellet 
soaked n a 6% KC solution was placed on the dura in 
the cannula above one hemisphere, and a pellet with 
saline solution was placed in the other cannula [A. A. P. 
Leao, J. Neurophysiol 7, 359 (1944): B. Grafstein, \bid. 
19, 154 (1955)l. Prior studies characteristically used 
high KC concentrations, at least 20%. We used a 6% 
solution to reduce the possibility of a motor hemiplegia 
or sensory neglect-a animals with KC  administered 
still performed the edge-paw placement test bilaterally 
and showed no sign of unilateral dysfunction. Recording 
of coriica electroencephalograms with two rats sug- 
gests that with our procedure the active depoarization 
period lasts 5 to 10 min. Thus, by the time rats ran in the 
maze, active depoarization may have been finished: the 
treated hemisphere may have been in a state of mild 
edema and consequent mild ischemia. 

24. Rats with LW intact made significantly more learning 
errors than rats with RW intact [F(1 ,13) = 8.05, P < 
0.01]. Rats with LH intact made fewer errors than 
rats with RH intact [F(1,15) = 5.96, P < 0.011. Each 
of three distinct normal maze baiting patterns in 
maze 2 elicited the same overall superiority of the 
LH-RW system. 

25. With the same initial maze as in the previous exper- 
iment, we tested 56 male Sprague-Dawey albino 
rats (90 to 120 days old) on a variation of the seec- 
tivey baited radial maze task. 

26. Rats with LW intact made marginally more errors 
than rats with RW intact when the staiting position 
was changed on each trial [F(1,26) = 2.20, P < 0.11. 
However, the difference for working memory errors 
alone wassignificant [F(1,26) = 4.20, P < 0.051. Rats 
with RW intact made more errors than rats with LW 
intact when the maze was rotated to a new position 
before each trial [F(1 , I  2) = 4.05, P < 0.051. 
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