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lnterneuron Migration from Basal Forebrain to 
Neocortex: Dependence on Dlx Genes 

S. A. Anderson, D. D. Eisenstat, L. Shi, J. L. R. Rubenstein* 

Although previous analyses indicate that neocortical neurons originate from the cortical 
proliferative zone, evidence suggests that a subpopulation of neocortical interneurons 
originates within the subcortical telencephalon. For example, y-aminobutyric acid 
(GABA)-expressing cells migrate in vitro from the subcortical telencephalon into the 
neocortex. The number of GABA-expressing cells in neocortical slices is reduced by 
separating the neocortex from the subcortical telencephalon. Finally, mice lacking the 
homeodomain proteins DLX-I and DLX-2 show no detectable cell migration from the 
subcortical telencephalon to the neocortex and also have few GABA-expressing cells in 
the neocortex. 

T h e  prinlary subdivisions of the  forebrain, 
including the neocortex and the  basal gan- 
glia, have distinct molecular and cellular 
properties (1,  2) .  Previous evidence suggests 
that these subdivisions develop from sepa- 
rate proliferative zones that do not  intermix 
(3) .  Here we show that cell migration oc- 
curs between the  primordia of the basal 
ganglia and the  cerebral cortex. Our  results 
suggest that many neocortical interneurons 
are generated by the  proliferative zone of 
the basal ganglia. 

Neocortical neurons include two types: 
the  excitatory pyramidal neurons and the  
inhihitory (GABA-containing)  interneu- 
rons. During development,  neocortical 
neurons were thought to  derive from the  
proliferative zone of the  neocortical pri- 
mordium. However. studies of neuronal 
migration in  vitro indicate tha t  cells mi- 
grate from the  lateral ganglionic eminence 
(LGE) (4), which is the  primordium of the  
striatum ( 5 ) ,  in to  the  neocortex. Othe r  
evidence suggests that  these cells might be 
lnterneurons. For example, clonally relat- 
ed G A B A - c o n t a i n ~ n o  cells tend to  be " 
more dispersed across the  neocortex t h a n  
are clones of pyramidal neurons (6);  there 
are GABA-containing cells in  the  inter- 
mediate zone (IZ) a t  the  transition be- 
tween the  LGE and the  neocortex. which 
have a morphology of tangentially migrat- 
ing cells (7 ) ;  and interneurons migrate 
tangentially from the  subventricular zone 

Nna  Ireland Laboratory of Developmental Neurob~ology, 
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(SVZ) near the  cortical-striatal junction 
into the  olfactory bulb (8). 

T o  investigate the  migration of subcor- 
tlcally derived cells into the  neocortex, we 
used a slice culture preparation (9). Crystals 
of 1,l'-dihexadecyl-3,3,3'-tetrainethylindo- 
carbocyanine perchlorate (DiI) were placed 
into the  LGE of embryonic day 12.5 
(E12.5) mice; after 36 hours in  culture, 
many labeled cells were detected in the  
neocortex (Fig. 1A) .  This migration begins 
o n  about E12.5, as only a few labeled cells 
reached the  cortex from E11.5 slices that 
were grown in  culture for 36 hours ( I@) .  
Many of the  DiI-containing cells in  the  
neocortex look like tangentially migrating 
cells, with leading processes tipped hy 
growth cones and a trailing process (Fig. 1, 
A and F). 

Calbindin is present In cells resembling 
the  tangentially oriented GABA-contain- 
ing cells that are found in  the  IZ of the  
developing neocortex (7,  1 1 ). T o  determine 
whether cells migrating from the  LGE into 
the  neocortex express calbindin or G A B A ,  
DiI \\?as inserted into the  LGE of slices from 
E12.5 to  E14.5 mice; the  slices were then 
incubated for 30 hours and resectioned. 
G A B A  (Fig. 1,  B through E) or calbindin 
(Fig. 1, G through J )  immunofluorescence 
was present in about 20% of DiI-labeled 
neocortical cells ( 12).  

T o  provide additional evidence for the  
migration of G A B A -  and calbindin-ex- 
pressing cells from the  subcortical telen- 
cephalon to  the  neocortex, we made slice 
cultures that  were transected a t  the  corti- 
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intact sides. To study the molecular regu- 
lation of this process, we focused on the 
transcription factors Dlx-1 and Dlx-2, 
which are homeobox-containing genes 
with virtually identical patterns of expres- 
sion in the developing forebrain (1 5). Al- 
though their expression in the telenceph- 
alon is initially restricted to the prolifera- 
tive zone of the basal ganglia primordia 
(16), by E13.5 they are expressed in the 
neocortex (1 0, 16). Like GABA and cal- 
bindin, DLX-l expression is reduced in 
the neocortex of transected slice cultures 
(Fig. 2, D through F). Double labeling for 
DLX-1 and either GABA or calbindin 
revealed coexpression in tangentially ori- 
ented IZ cells (Fig. 2,' G and H), which 
suggests that Dlx genes could be required 
for cell migration from the subcortical tel- 
encephalon to the neocortex. 

Analysis of mice with a mutation in both 
Dlx-1 and Dlx-2 (Dlx-112) also suggests that 
these genes are required for the subcortical- 
to-cortical migration. Homozygous Dlx-112 
mutants have abnormal migration out of 
the LGE, resulting in an accumulation of 
partially differentiated neurons in the LGE, 
hypoplasia of the striatum, and a loss of 
normal olfactory bulb interneurons (9). 
These findings suggest that migration from 
the LGE to the neocortex might also be 
affected in the DLc-112 mutants. In the slice 
culture preparation, there is no detectable 
migration of cells from the LGE to the 
neocortex in E12.5 or E15.5 mutant embry- 
os (Fig. 3). 

Because migration from the LGE to the 
neocortex is not detectable in the Dlx-112 

mutants, we predicted a reduction of 
GABA- and calbindin-expressing cells in 
their neocortexes. Indeed, early in corti- 
cogenesis and at the day of birth (PO) 
(when the mutants die), the number of 
neocortical GABA- (1 7) and calbindin- 
expressing cells (Fig. 4, A through D) is 
greatly reduced in the Dlx-112 mutants. 
The expression of the synthesizing enzyme 
for GABA, glutamic acid decarboxylase 
(GAD), was also reduced in the neocortex 
of these mutants (Fig. 4, E and F). The 
reduction of interneuron markers was 
present throughout the neocortex and the 
hippocampal CA fields. However, not all 
cortical areas were affected by the muta- 
tion. as the GAD immunoreactivitv of the 
paleocortex marginal zone (MZ) appeared 
normal (arrow in Fig. 4F). 

Although the number of GABA-reac- 
tive cells in layer I of the Dlx-112 mutants 
was reduced (1 7), Cajal-Retzius neurons, 
which facilitate radial migration within the 
developing neocortex, were present, as in- 
dicated by the expression of reelin and cal- 
retinin (10, 18). The analysis of cortical 
lamination in the Dlx-112 mutants by Nissl 
stain and bromodeoxvuridine birth-datinp " 
(lo), as well as the appearance of calbindin- 
reactive pyramidal neurons in layer V (Fig. 
4D), suggest that the radial migration of 
neocortical projection neurons is unaffected 
in these mutants. 

In summary, we have provided evidence 
for the migration of GABA-expressing cells 
from a subcortical source (the LGE) to the 
neocortex (1 9, 20). Because this migration 
is absent from the Dlx-112 mutants, which 

Fig. 1. Cell migration from the LGE to the neocortex (NCX) in slice cultures. (A) This slice was prepared 
from an E12.5 embryo and cultured for 36 hours. Many Dil-labeled cells are present in the NCX. The 
arrow indicates the cell shown in (F). Analysis of GABA- (B through E) and calbindin- (G through J) 
expressing cells in slice cultures. Slices were prepared at E12.5 with Dil placed in the LGE (12). (Band 
G) Low-power views of GABA (B) and calbindin (G) immunofluorescence. The arrows indicate the 
positions of the cells shown in (C) and (H) [(C), GABA; (H), calbindin]; these cells also contain Dil [(D) and 
(I)]. [(E) and (J)] Double exposures show colabeling with immunofluorescence and Dil [(E), GABA; (J), 
calbindin]. Scale bars, 100 pm; except in (C) and (F), where bar = 15 pm. 

Fig. 2. Calbindin (A through C), and DN-1 (D 
through F) immunoreactivii in E12.5 slices cul- 
tured after transection between the NCX and LGE 
on the right side. Slices were then resectioned at 10 
pm and processed for immunohistochemistry (13). 
(A) After 40 hours in culture, calbindin-positive cells 
are reduced in the transected (C) as compared with 
the intact (B) side of the slice. Boxed areas in (A) are 
shown at higher magnification in (B) and (C). (D) 
DN-1 expression after 60 hours in culture; the 
expression boundary in the LGE is maintained (ar- 
row), and DN-1 positive cells are detectable in the 
NCX of the intact side but not on the transected 
side (F). Boxed areas in (D) are shown at higher 
magnification in (E) and (F). (G and H) DM-1 (dark 
nuclear stain) is coexpressed with GABA (G) and 
calbindin (H) (brown cytoplasmic stain) in the neo- 
cortical primordium of the E13.5 embryo. Arrow- 
heads, double-labeled cells; black arrows, DM-1 
only; white arrows, calbindin (G) or GABA (H) only. 
Scale bars in (A) and (D), 200 Fm; in (G), 15 Fm. 
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Fig. 3. Comparison of cell migration out of 
=,,.; 

the LGE in slice cultures from wild-type (A * 

and C) and DIx-7/2 mutants (B and D). 
Slices were cultured for 36 hours. At El 2.5 
[(A) and (B)], cells in the wild-type slice (A) 
i i ~ v e  miymted-f tvm~t-(K-~~ tile Wd-- 
this migration is absent in the mutant slice 
(B). [(~iand (D)] Slices from El 5.5 animals. 
The Dil was photoconverted in diamino- 
benzidine. As at the earlier age, little or no 
migration into the neocortex occurred in 
the Dlx- 1/2 mutant slice [(D)]. v, lateral ven- 
tricle. Scale bar, 200 pm. 

Fig. 4. Analysis of the developing NCX in the 
Dlx- 712 mutants. lmmunohistochemistry for cal- 
bindin (A through D) in coronal sections. (A) At 
E14.5, tangentially oriented cells are present in 
the IZ (arrow) of the wild-type NCX. (B) The num- 
ber of these cells is markedly reduced in the 
mutant. [(C) and (D)] At PO, calbindin-expressing 
pyramidal neurons are present in layer V of the 
mutant neocortex (D), but fewer calbindin-posi- 
tive interneurons [arrows in (C)] are detectable. 
(E and F) At PO, GAD immunoreactivity in layer I 
(arrowheads) is reduced in the mutant NCX (F). 
This reduction occurs abruptly in the region (ar- 
row) between the NCX and paleocortex (PCX). 
Scale bars, 100 pm in (A), 50 pm in (C), and 500 
p,m in (E). 

also lack most GABA-expressing cells in 
the olfactory bulb (9), we propose that the 
subcortical SVZ produces intemeuron pre- 
cursors for both the neocortex and the ol- 
factory bulb (21). The residual presence of 
neocortical GABA-expressing cells in the 
mutants suggests that neocortical intemeu- 
rons are derived from multiple spatially dis- 
tinct sources. 

Although we have previously proposed 
that the LGE and neocortex are inde~en- 
dent compartmentlike structures ( I ) ,  the 
present study demonstrates that a more 
complex situation exists, in which there is 
cell mixing between the mantle zones of 
these domains. We suggest that the ventric- 
ular zones (VZs) of the neocortex and LGE 
correspond to compartments, where the re- 
gional identity of precursor cells are speci- 
fied and there is clonal restriction of Dre- 
cursor cells to one compartment. As cells 
mature and leave the VZ, specific lineages 
(such as interneurons and projection neu- 
rons) follow distinct differentiation Dro- 
grams, which include tangential migration 
of some interneurons to different forebrain 
regions. 
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