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Mediation of Classical Conditioning in Aplysia 
californica by Long-Term Potentiation of 

Sensorimotor Synapses 
Geoffrey G. Murphy and David L. Glanzman* 

Long-term potentiation (LTP) is considered an important neuronal mechanism of learning 
and memory. Currently, however, there is no direct experimental link between LTP of an 
identified synapse and learning. A cellular analog of classical conditioning in Aplysia was 
used to determine whether this form of invertebrate learning involves N-methyl-D-as- 
partate (NMDA)-type LTP. The NMDA receptor-antagonist DL-2-amino-5-phosphono- 
valerate significantly disrupted synaptic enhancement after associative training but did 
not disrupt synaptic enhancement after nonassociative training. Thus, classical condi- 
tioning in Aplysia appears to be mediated, in part, by LTP due to activation of NMDA- 
related receptors. 

LTP of Aplysia sensorimotor synapses, 
like LTP of synapses in  the  C A I  region of 
t h e  lnalninalian hippocainpus (1 ), requires 
strong postsynaptic depolarization and 
postsynaptic influx of Ca2+  ( 2 ,  3 ) .  Fur- 
thermore, induction of LTP of '4plysia sen- 
sorimotor synapses also resembles LTP of 
C A I  synapses (4 )  in  its requirement for 
activation of NMDA-type receptors ( 5 )  
because it can be inhibited by the  verte- 
brate N M D A  receptor-antagonist DL-2- 
amino-5-phosphonovalerate ( A P V )  (3 ) .  
T h e  finding ( 3 )  tha t  LTP of the  sensori- 
motor synapses can  be induced i n  Hebbian 
( 6 )  fashion raises the  possibility that  LTP 
might mediate classical conditioning of 
the  siphon-withdrawal reflex of Aplysia 
( 7 ) .  Tail  shock, the  unconditioneil stimu- 
lus ( U S )  for this form of associative learn- 
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ing, strongly depolarizes, and typically 
fires, t he  siphon inotor neurons (8 ) .  Thus,  
paired presentation of the  conditioned 
stirnulus (CS)-weak tactile stimulation 
of t h e  animal's siphon or mantle-and the  
US during conditioning should produce a 
pattern of neural actlvlty wlthln the ner- 
vous system of ,4blzsta llke that used to 111- 

duce ~ e b b i a n  LTP of in vitro sensorilnotor 
synapses (3):  brief firing of the sensory neu- 
rons paired with strong depolarization of 
the lnotor neurons (9). Support for the idea 
that classical conditioning in Aplysia might 
involve LTP of sensorimotor synapses 
comes from the  finding tha t  infusing the  

u u 

postsymaptic lnotor neuron with the  Ca2+ 
chelator 1,2-bis(2-aminophenoxy) ethane- 
N,N-N1.N'-tetraacetic acid (BAPTA) blocks 
a cellular analog of classical conditioning 
(10). 

In  this study, we tested the  hypothesis 
( 3 ,  1 1 ) that classical conditioning of the  
siphon-withdrawal reflex of Aplysia is inedi- 
ated, in  part, by N M D A  receptor-type LTP. 
Accordingly, we examined whether the  cel- 

L ,  

lular analog of classical conditioning of this 
reflex (1 2 )  was disrupted when training was 

carried out in  the  presence of APV. K'e 
assessed the strength of the symapse between 
a siphon sensory neuron and a siphon lnotor 
neuron in the abdominal ganglion before, 
during, and after coniiitionii~g-related trai11- 
ing (13). For this cellular analog of classical 
conditioning, the CS was brief intracellular 
stimulation of the sensory neuron and the  
US was extracellular stimulation of the tail 
(P9) nerves (Fig. I A ) .  Some preparations 
received the paired CS-US stilnuli in artifi- 
cial seawater (ASW) containing APV (100 
p M )  (14). W e  also included two groups of 
~ultrained preparations that received the test 
stimuli but not the paired stimuli. O n e  ~111- 

trained group (Test alone) received the test 
stimuli in normal ASW; the other untrained 
group (Test alone-APV) received the test 
stimuli in ASK' containing APV. Further- 
more, we carrieii out additional control ex- 
periments in which the CS anil US were 
delivered in unpaired fashion in  the presence 
and absence of APV (see below). 

T h e  monosynaptic sensorimotor excita- 
tory postsynaptic potentials (EPSPs) in prep- 
arations that received only the  test stimuli in 
ASW exhibited the  homosynaptic depres- 
sion characteristic of Aplysia sensorilnotor 
synapses (Fig. 1,  B and C )  (15-17). T h e  
presence of APV did not significantly affect 
this homosynaptic depression, as indicated 
by the  Test alone-APV data (17, 18). T h e  
rnonosynaptic EPSPs in preparations that re- 
ceived paired presentatiol~s of the CS and 
US in normal ASW (CSt  group) were sig- 
nificantly enhanced on both the 15- and 
60-mi11 posttests compared with the pretest 
EPSPs as well as with the EPSPs of Test 
alone preparations o n  the posttests (1 8 ) .  T h e  
presence of APV during training significant- 
ly disrupted the synaptic enhancelnent pro- 
duced by paired st~mulation. However, APV 
did not completely elilnimate this syl~aptic 
enhancement; the mean amplitude of the 
CS+-APV EPSPs was significantly greater 
than that of the  Test alone-APV EPSPs o n  
the  15-min posttest (Fig. 1, B and C; CS+- 
APV data). T h e  paired stimulation also pro- 
duced strong enhancement of the arnplitude 
of the potentially polysyi~aptic sensorimotor 
EPSPs evoked o n  the test trials during train- 
ing. This enhancement was reduced in the 
presence of APV, albeit not significantly so 
(19). 

A possible explanation for the  reduced 
enhancement of the  monosynaptic sensori- 
motor connection after training in APV is 
that the  iirug might have disrupted the  
activity, or efficacy, of endogenous facilita- 
tory interneurons, which are activated in 
'4plysia by US-related stimuli (8, 20,  21).  
T o  test this possibility, we carried out ex- 
perilnents similar to  those described above 
but with a specifically unpaired training 
protocol. Such a protocol induces presynap- 
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tic facilitation - of sensorimotor synapses 
(1 2, 22). This nonassociative form of syn- 
aptic enhancement is thought to play a 
significant role in behavioral sensitization 
of the withdrawal reflex (23). During non- 
associative training, preparations received 
five unpaired presentations of the CS and 
US in which the US preceded the CS by 
2.5 min (Fig. 2A). These experiments were 
carried out in either normal ASW or in 
ASW containing APV. A group of un- 
trained preparations that received only the 
test stimuli (Test alone group) was also 
included (24). As before, the Test alone 
group exhibited homosynaptic depression 
(Fig. 2, B and C) (25). Unpaired training in 
either normal ASW (CS- group) or ASW 
containing APV (100 pM; CS--APV 
group) resulted in significant enhancement 
of the sensorimotor EPSP, compared with 
the Test alone group, when assessed 15 min 
after the last US (Fig. 2, B and C) (26). 
There was no significant difference be- 
tween the amplitudes of the EPSPs for the 
CS- and CS--APV groups on either the 
15- or the 60-min posttest. Thus, APV did 
not disrupt enhancement of the monosyn- 
aptic sensorimotor EPSP because of un- 
paired stimulation. Unpaired training, like 
paired training, enhanced the test sensori- 
motor EPSPs evoked during training, but 
the presence of APV did not decrease the 
amplitude of these EPSPs (27). In summary, 
our data from the experiments involving 
unpaired stimulation indicate that the re- 
duction of synaptic enhancement observed 
after paired training in APV cannot be 
attributed to disruption of facilitatory path- 
ways (28). 

The CS+ and CS- groups were directly 
compared (Fig. 2D). The CS+ EPSP and 
the CS- EPSP were significantly greater 
than the Test alone EPSP on the 15- and 
60-min posttests (29). The CS+ EPSP and 
the CS- EPSP were statistically indistin- 
guishable on the 15-min posttest, but on 
the 60-min posttest the CS+ EPSP was 
significantly greater than CS- EPSP. Thus, 
unpaired training produced significant non- 
associative enhancement of the monosyn- 
aptic sensorimotor EPSP, as indicated by 
the significant difference between the CS- 
and Test alone EPSPs on both posttests; 
also, paired training induced a long-term 
associative synaptic enhancement, which 
was evident 60 min after the last bout of 
paired stimulation (30). 

These results support the hypothesis (3, 
11 ) that LTP-related enhancement of sen- 
sorimotor synapses plays a significant role in 
classical conditioning in Aplysiu. A model 
for how the stimuli used for classical condi- 
tioning of the siphon-withdrawal reflex (7) 
induce LTP of the sensorimotor synapses 
(2, 3) is shown (Fig. 3). Together with 

earlier results (10). our data indicate that . ,, 

the site of induction for associative, condi- 
tioning-related enhancement of the senso- 
rimotor connections must be, in part, 
postsynaptic. Induction of this synaptic 
change cannot be exclusively presynaptic, 
as previously argued (1 2, 22). It is unclear, 
however, whether the locus of expression 
for this synaptic enhancement is pre- or 
postsynaptic. Some evidence (1 2,31,32) is 
consistent with a presynaptic locus of ex- 
pression. If conditioning-related enhance- 
ment of the sensorimotor connections does 
involve increased presynaptic release, then 
our results implicate a retrograde messenger 
analogous to that implicated in LTP of 
synapses in the CAI region of the hip- 
pocampus (33) (Fig. 3). However-again by 
analogy with LTP of CA1 synapses (34)- 
even if classical conditioning in Aplysiu 
does involve increased presynaptic release, 
postsynaptic changes may also contribute to 
the expression of conditioning-related en- 

hancement of sensorimotor connections. 
Another issue raised by these results is 

the role of serotonin [5-hydroxytryptamine 
(5-HT)], or other facilitatory neurotrans- 
mitters, in classical conditioning in Aplysiu. 
Such modulatory neurotransmitters play a 
central role in a previous hypothesis about 
the cellular mechanism of this form of as- 
sociative leaming (12, 22). Significant, al- 
beit still indirect, evidence supports a role 
for 5-HT in classical conditioning in Aply- 
sia (12, 21, 31, 32, 35, 36). This suggests 
the possibility that US-stimulated release of 
5-HT, and possibly other endogenous mod- 
ulatory transmitters, might interact with 
NMDA-type LTP during classical condi- 
tioning, producing both pre- and postsyn- 
aptic cellular changes (Fig. 3). 

Evidence from a variety of studies sug- 
gests that NMDA receptordependent syn- 
aptic plasticity is involved in associative 
leaming in vertebrates (37). But the precise 
role of NMDA receptors in vertebrate 
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Fig. 1. A W  disrupts the associative enhancement that re- 
sults from repeated CS-US pairings. (A) Experimental proto- 
col for the cellular analog of classical conditioning of siphon 
withdrawal. Training included seven test trials (T, to T,) and 
five CS-US pairings (arrows). In addition, there were three 
pretests (Pre, to Pre,) and two posttests. The three pretests, 
as well as Test 1, were separated by 15 min. Posttests (PT,, 
and PT,) were conducted 15 and 60 min after the last 

15 m ~ n  60 mln 
CS-US pairing. Pretest 1 and Pretest 2 were carried out in Posttest 
normal ASW. After Pretest 2 the 2:l  ASW (black bars) (13) 
was perfused into the recording chamber, and Pretest 3 was performed. The 2: l  ASW was then 
washed out, and training proceeded in normal ASW or in ASW with APV (hatched bar). After Test 1 the 
2:1 ASW was reintroduced and remained in the recording chamber during the posttests. Sample 
records from a sensory neuron and a motor neuron during a CS-US pairing from a CS+-APV experiment 
are also shown. The US produced strong depolarization and firing of the motor neuron. (6) Represen- 
tative records from pretest and 60-min posttests. (C) Effect of APV on the cellular analog of classical 
conditioning. The EPSP amplitude for the 15- and 60-min posttests was normalized to the amplitude of 
the EPSP of Pretest 3 (A). 

468 SCIENCE VOL. 278 17 OCTOBER 1997 www.sciencemag.org 



learning is h igh ly  controversial (38). O u r  
results indicate that  N M D A - t y p e  synaptic 
plasticity is a phylogenetically ancient neu- 
ra l  mechanism that  mediates at least one 
kind o f  invertebrate associative learning. 
Thus, the siphon-withdrawal reflex o f  Aply- 
sln and its uni ier ly ing neural  c i rcui t ry offer a 
relatively simple model system for rigorous 
analysis o f  the role o f  N h l D A - t y p e  recep- 
tors in associative learning. Such a n  analy- 
sis should facil i tate a n  understanding o f  the 
contribution o f  NMDA receptors to  learn- 
i ng  in more complex animals. 
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secreting cells, which may enhance phos- 
uhorvlation of the voltage-gated L-tvue 

u u 

1 nhibition of Phosphatases and 1 ncreased Ca2+ b" chanllel or an associated protein. re- 
S L I ~ ~ S  In an Increase In channel open prob- 

Channel Activity by lnositol Hexakisphosphate at.lllty, [ca2+], and insLllln release (5, 61. 
InsP,, at concentrations similar to those 

Olof Larsson, Christopher J. Barker, ake Sjoholm, present in ins~~lin-secreting cells (40 to 54 
Hakan Carlavist. Robert H. Michell. Aleiandro Bertorello. FM) ( 1  1 ), suppressed the activities of PPI, 

Thomas ~ilsson', Richard E. ~onkanen: Georg W. ~ a ~ r ;  PPzA, and P P ~  ~n a concentration-depen- 

Jean Zwiller, Per-Olof Berggren* dent manner, with inhibition constant K,  
values at or below -10 p.M (FIE. 2A and 

lnositol hexakisphosphate (InsP,), the dominant inositol phosphate in insulin-secreting 
pancreatic p cells, inhibited the serine-threonine protein phosphatases type I, type 2A, 
and type 3 in a concentration-dependent manner. The activity of voltage-gated L-type 
calcium channels is increased in cells treated with inhibitors of serine-threonine protein 
phosphatases. Thus, the increased calcium channel activity obtained in the presence of 
InsP, might result from the inhibition of phosphatase activity. Glucose elicited a transient 
increase in InsP, concentration, which indicates that this inositol polyphosphate may 
modulate calcium influx over the plasma membrane and serve as a signal in the pan- 
creatic p cell stimulus-secretion coupling. 

Depolarlzation-induced opening of volt- 
age-gated L-type Ca2+ channels results in 
an increase in cytoplasmic free Ca" con- 
centration ([Ca2+],) and is one of the main 
features of the S ~ ~ ~ L I L I S - s e c r e t i o  coupling 
in insulin-secreting cells (1). Under physi- 
ological conditions, depolarization is initi- 
ated by rapid uptake and phosphorylatlon of 
glucose, which result in the closure of aden- 
osine triphosphate (ATP)-regulated K t  
channels. Insulin-secreting cells also have a 
number of receptors whose activation regu- 
lates the intracellular concentration of ino- 
sltol polyphosphates (2) .  Although a large 
number of inositol polyphosphates have 
been identified in eukaryotlc cells (3) ,  ex- 
cept for the lnositol 1,4,5-trisphosphate- 
Induced lnohlllzation of Ca" from ~ntracel- 
lular stores, little is known about their roles 
in cell regulation. Protein phosphorylation 
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modulates the activity of voltage-sensitive 
ion channels (4), and in insulin-secreting 
cells, the activity of voltage-gated L-type 
Ca2+ challllels 1s increased by inhibltloll of 
serine-threonine protein phosphatases 
(PPases) (5, 6). 

We exa~nlned the inositol phosphates 
present in insulin-secreting cells after lahel- 
ing them for 168 hours with [2-3H]mpo- 
inositol (Fig. I ) ,  when all illositol phos- 
phates are at isotoplc equilibrium (7, 8).  
InsP, was the dominant inositol phosphate 
in hamster insulin-secretine (HIT) cells. as 

Table 1) (12). The inhihltorv effects of 
InsP6 on PPase activities were simllar to 
those of OA (13). Two Isomers of lllosltol 
pentaklsphosphate (InsP,), Ins(1,3,4,5,6)Pj 
and Ins(1,2,3,4,6)Pj, were one-half to one- 
flfth as potent, dependlng on the particular 
coinbillatloll of InsPj and PPase (Flg. 2,  C 
and D) Ins(1,2,3,4,6)Pj, llke InsP6, In- 
cludes a 1,2,3-trlsphosphate arrav that blllds 
Fe3+ and probahlv other catlons (14). How- 
ever, the fact that Insi1,2.3,4.6)P, has a 
lower potency than 1nsP; indicates ;hat thls 
type of chelation is not the primary mech- 
anism in PPase inhibition (15). Whereas 
PP3 was the most selective for InsP6, PP1 
was the least selective, and PP2A fell in 
between (Table 1). However, neither the 
dominant inositol tetraphosphate (InsP,) 
in these cells, Ins(3,4,5,6)P,, nor the other 
major InsP,, Ins(1,3,4,5)P4, had any inhib- 
itory effect up to 100 FM (16). The fact 
that removal of one or two of the SIX phos- 
phate groups from InsP, elther reduced or 
abolished these effects illdicates that PPase 
illhibitioll by InsP, is specific and is not 
slmolv an effect of a concentrated arrav of -~ , L ,  

it is in other mammalian cells (9). ~n monoester phosphate groups. Inositol h im-  
inositol-containing compound that is more sulfate (InsS,), which presents a charge ar- 
polar than InsP,, most llkely a pyrophos- ray similar to that of InsP6, was about one- 
phate derivative (9),  was also present. En- fourteenth as potent an inhibitor of PP2A 
zyme assays and immulloblots of cell ho- and PP3 (Flg. 2B and Table 1). InsP, is 

Table 1. K, values of varlous inositol polyphosphates for the nhbition of the three serine-treonne 
PPases. The values for K and SEM were obtained by analyss of the data by nonlinear regresson, ftting 
the data to sigmoidal dose-response cutves generated by software (Prism: GraphPAD. San Diego. 
Caforna) Values were obtaned by one-way ANOVA with P values corrected for multlple comparisons 
by the Bonferroni method (Instat) S~gnificant differences between the K, values of InsP, and other 
inositol derivatives for each PPase are shown (*P < 0.05. *=P < 0 01, and ***P < 0.001). ND,  not 
determined. 

K,(pM) 2 SEM 
lnos~tol 

der~vat~ve PPase 1 PPase 2A PPase 3 
(n = 4) (n = 6) (n = 6) 
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