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Direct Visualization of Individual Cylindrical and 
Spherical Supramolecular Dendrimers 
S. D. Hudson,* H.-T. Jung, V. Percec,* W.-D. Cho, 
G. Johansson, G. Ungar,* V. S. K. Balagurusamy 

Electron microscopy methods have been used to visualize individual spherical and 
cylindrical supramolecular dendrimers, providing definitive confirmation of the structures 
suggested by previous x-ray diffraction analysis that assumed a microsegregated model. 
These dendrimers are self-assembled, self-organized, and aligned spontaneously and 
simultaneously in hexagonal columnar or cubic thermotropic liquid-crystal phases with 
high uniformity. Homeotropic and planar ordering of the hexagonal columnar liquid 
crystal was precisely controlled by a variety of surfaces. The stiffness of these cylinders 
was evaluated by examining their planar texture and its defects. 

Control  of the order of molecular, mac- 
romolecular, and supramolecular synthetic 
organic materials is an important goal in 
chemistry, that can be used to improve the 
materials' properties ( 1 3 )  Building 
blocks based on dendritic architectures 
(4), which have a hierarchy of branched 
structures, can generate molecular objects 
of nanoscale dimensions (5, 6) ,  and self- 
assembly of supramolecular dendrimers 
from monodendritic building blocks can 

u 

provide rapid access to the construction of 
giant architectures (7). The elucidation of 
the shaoe of dendriiners in solution and in 
the bulk represents one of the most impor- 
tant nrereauisites for access to thelr con- 
trolled design (4-6). A transition from an 
ovoidal to a spherical shape by increasing 
the generation number has been predicted 
for dendrimers (8). Various studies have 
suggested that in solid and melt states, 
dendrimers or their aggregates, or both, 
can adopt either spherical (5)  or rod-like 
shapes (6). However, because the previ- 
ously studied dendritic systems lacked 
long-range positional order, individual ob- 
jects could not be isolated, and therefore, 
the shaoe and size of these dendrimers 
could not be determ~ned 

RecentlT, me have advanced a rat~onal 
deslgn and sTntheslzed monodendrons that 
self-assemble through varlous molecular 

novel thermotropic cubic (Cub) liquid- 
crystalline (LC) phase of Pm3n symmetry 
(3D lattice) ( 1  1 ) .  The lattices of both su- 
orainolecular LC asselnblies can be oriented 
by using techniques available for the align- 
ment of molecular LC asseinblies 11 2 )  to 
generate single-domain LCs. Analysis of 
mono- and polydomain LCs by x-ray dif- 
fraction IXRD) allowed the determination 
of the shape, size, and structure of supramo- 
lecular dendrimers organized in a lattice 
(9-1 1 ) .  However, owing to the ubiquitous 
phase problem, uncertainty is always 
present in crystallographic analyses based 
on limited numbers of reflections observed 
in LC systems (up to 13 different reflections 
obtained for 3 )  (1 1). In our XRD experi- 
ments (1 I ) ,  the key assumption was that 
aromatic and aliphatic moieties segregate, 
aliphatic regions having uniform density. 
Thus, direct vis~ualization of the structure bv 
transmlssion electron microscopy (TEM) 1s 
invaluable in testing the assumptions on 
which the XRD structure is based (1 3). We 
directly imaged individual species of cylin- 

recognition mechanisms into rod-like 19). ' 
C Z  

c~lindrical ( l o ) ,  and spherical (1 1 )  su- 
pramolecular dendrlmers The cyllndr~cal a 

supramolecular dendrirners self-organlie 
into a ther~notroolc hexagonal col~umnar 
(Dh) (10) [two-dimensional (2D) p6mm cub : ~ m j n  

lattice], whereas the spherical ones form a Fig. 1. Self-assembly of (A) frst-generation flat 
tapered monodendrons into a supramolecular cy- 
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drical and spherical supramolecular den- 
drimers arranged into p6mm mh and Pm3n 
Cub LC lattices, respectively. The orienta- 
tion of these lattices was manivulated bv 
various surfaces to produce large domains 
with a high degree of order. The analysis of 
their defects allowed the determination of 
the relative stiffness of these supramolecular 
columns. 

Figure 1 outlines the mechanisms by 
which flat tapered and conical monoden- 
drons generate, respectively, cylindrical and 
spherical supramolecular dendrimers (1 0,  
11). Subsequent self-organization is also 
shown. Two monodendrons. 1 and 2. which 
self-assemble into cylindrical supramolecu- 
lar dendrimers (lo), and two others, 3 and 
4 (1 1 ), which self-assemble into spherical 
supramolecular dendrimers, were studied 
(Fig. 2) (14). 

Fig. 2. Tapered 1 and 2 and conical 3 and 4 
monodendrons analyzed by TEM. 

The mh phase of 1 and 2 was oriented by 
surface anchoring in thin films (1 5) .  Excel- 
lent planar alignment of the supramolecular 
columns was achieved on volar substrates 
such as water and glycerin. Homeotropic 
alignment was produced on untreated glass 
and carbon films. Metal substrates such as 
polycrystalline Pd produce alignments that 
depend on their crystallographic orienta- 
tion. Homeotropically aligned structures 
(with thickness of up to millimeter size) can 
be transformed into planar-aligned ones by 
shearing. Previously, only homeotropic 
alignment was observed by optical micros- 
copy (10). In many respects, the control of 
the orientation of these supramolecular cy- 
lindrical LC assemblies bv surface anchor- 
ing resembles that for various molecular 
assemblies such as LCs (1 6), crystals (1 7), 
and to a lesser extent, monolayers and 
Langmuir-Blodgett films (1 8). The LC na- 
ture of these supramolecular materials en- 
sures thermodynamic control of the order- 
ing process. Therefore, self-assembly, self- 
organization, and alignment of these com- 
plex functional supramolecular systems take 

Fig. 3. Phase-contrast micrograph of (A) homeo- 
tropically and (B) planar-aligned @, LC assemblies 
generated by supramolecular cylinders self-as- 
sembled from 1. (Insets) ED patterns. The image 
represents a projection through a film having a 
thickness equal to apprcximately 15 column di- 
ameters (diameter is 49A). On the original nega- 
tives, (1 O), (21), (20), (31), and (30) reflections are 
seen for homeotropic specimens, examined with 
the incident beam parallel to the cylinder axis. For 
planar specimens, (10) and (20) reflections are 
observed at normal incidence. The (21) reflection 
becomes visible when the sample is tilted 30" 
about the cylinder axis (30). 

place spontaneously and simultaneously. 
Previous examples of surface-aligned su- 
pramolecular assemblies were limited . to  
less-complex systems such as lyotropic sur- 
factants (19) and block copolymers, which 
also exhibit a slower rate of self-organiza- 
tion (20). 

The TEM micrographs pf aligned 1 (lat- 
tice constant a = 45.7 A from XRD at 
70°C) (10) present end and side views of 
the ah LC assemblies (Fig. 3). The cores of 
the supramolecular columns are dark (Fig. 
3A), indicating the regions of higher den- 
sity (in unstained samples) and the place 
where RuO, was preferentially complexed 
(in stained samples). Because this agent 
stains the aromatic and the crown-ether 
fragments of the monodendrons, the TEMs 
reconfirm previous XRD analysis (10) that 
suggests crown-ethers form the core of the 
column (Fie. 1) and demonstrate that there . " .  
is a high degree of perfection in the packing 
of these infinitely lpng columns. Com- 
pound 2 (a = 45.6 A by XRD at 100°C) 
self-assembles intp much stiffer columns 
than 1 (a = 45.7 A by XRD at 70°C) when 
quenched from 50" to 20°C (Fig. 4). The 
relative stiffness of columns 1 and 2 in the 
LC phase was evaluated from their distor- 
tion near a dislocation defect (Fig. 4) (21 ). 
The columns adjacent to the dislocation are 
tilted slightly with respect to the central 
column. The permeation length A is pro- 
portional to the square of the length L of 
the bent segment of a column divided by its 
distance z from the central columns, that is 
A L2/z, and therefore, estimates the col- 
umn stiffness (22). This value was predicted 
to be of the order of columnodiameter (a) 
(23). In the case of 1, A is 16 A (in rescaled 
form, A = 035 2 0.15~) and in the case of 
2, A is 230 A (that is, 5 2 la). Because of 
the laree diameters of 1 and 2. their A 

u 

values are larger than the only literature 
data available for a rigid rod polymer, A = 8 
A = 0 . 9 ~  (24). In addition, the rescaled 

Fig. 4. TEM micrograph of planar-aligned @, me- 
sophase of 2, quenched to 20°C from 50°C. A 
dislocation is observed approximately 1 1 columns 
down from the top of the figure. The column di- 
ameter is 58 a. 
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value h of 2 is significantly larger than 1.0. 
This is consistent with a column based on a 
rigid core surrounded by a deformable 
sheath. These data indicate that the rigidity 
of these supramolecular columns and their 
interactions can each be controlled inde- 
pendently by design. 

XRD analysis of the cubic phases of com- 
pounds 3 and 4 determined their space 
groups to be Pm3n (1 1 ). O n  the basis of the 
assumption that the aliphatic and aromatic 
portions of the molecules are segregated, 
two possible structures were derived from 
Fourier synthesis (1 1). The structure that 
produced the greatest degree of segregation 
of these segments is a spherical model (Figs. 
1B and 5E). The closest rival structure to 
the spherical model is a cubic phase con- 
sisting of three sets of mutually perpendic- 
ular columns (Fig. 5G). TEM imaging of 3 
and 4 provides complementary, direct, and 
conclusive discrimination of these two 
models. 

A TEM image of the spherical supramo- 
lecular dendrimer self-assembled from 16 4 
monodendrons (1 1) is shown in Fig. 5A. 
Before this report, a related Pm3n Cub lat- 
tice was observed bv a combination of XRD 
and freeze-fracture TEM only in a lyotropic 
phase of biological lipids (25). Recently, 
this phase was predicted theoretically for 
short diblock copolymers in the presence of 
a diluent (26). Our visualization was made 
possible by the preparation of large, single- 
crystal LC and by the adequate beam resis- 
tance of these materials. Electron diffrac- 
tion (ED) of this sample is consistent with 

Fig. 5. TEM and ED of the ~ m 3 n  Cub LC phase 
of the suprarnolecular dendrimer of 4. Shown 
are (A) the raw image; (B) a reconstructed im- 
age, based on Fourier filtering of the (200), (210), 
and (400) peaks contained in the power spec- 
trum (D); (C) the corresponding ED pattern; (D) 
the Fourier transform power spectrum of the raw 
image; (E) schematic model of the phase gener- 
ated from supramolecular spherical dendrimers; 
(F) [OOl] projection of the spherical model; (G) 
rival schematic model of the phase generated 
from suprarnolecular columnar dendrimers; and 
(H) [OOl] projection of the rival cylindrical model. 
The boxed regions in (F) and (H) correspond to 
one unit cell as illustrated in (E) and (G), respec- 
tively. The power spectrum [that is, the Fourier 
transform multiplied by its complex conjugate (D)] 
obtained from (A) reproduces the ED pattern (C). 
Each of the six reflections of the [OOl] zone seen by 
ED (27) are present in (D), yet because the defocus 
was selected for high resolution, the relative inten- 
sity of the (400) reflection, for example, is en- 
hanced. The (1 00) and (300) reflections are absent, 
as expected. Also absent is the (1 10) reflection 
which, though an allowed reflection for the Pm3n 
space group, was only very weakly detected by 
XRD (1 1). From analysis of the diiuse background 
of (D), the~esolution of the image (A) was calculated 
to be 20 A, and the circular symmetry of the backgrc 

XRD (a = 87.3 A at 58°C) (1 1, 27). 
Six low-angle reflections, which are con- 

sistent with XRD, were detected by ED 
(27). They are also present in the power 
spectrum (Fig. 5D) calculated from the 
TEM image (Fig. 5A), and because their 
phases are preserved in the TEM image, the 
structure can be determined directly by 
comparison of the image with projections 
from the two rival models (Fig. 5, E and F 
and G and H). The [001] projection of each 
contains two sets of perpendicular dark 
lines. At their intersection, the columnar 
model produced a dark spot (Fig. 5H), 
whereas the spherical model produced a 
white one (Fig. 5F). Although the light- 
ened comer can be seen directly on the 
original image (Fig. 5A), it becomes more 
clear through the use of Fourier filtering, an 
averaging technique (Fig. 5B). The Fourier 
transform is filtered by setting the transform 
to zero everywhere except in the neighbor- 
hood of these diffraction peaks. If the 
neighborhood is chosen to be narrow, then 
the averaging is extensive, whereas if the 
neighborhood is chosen to be larger, the 
average is more local and noise is selectively 
introduced (28). The three most intense 
peaks of the transform were selected, and a 
neighborhood cen~ered on each, having a 
diameter of 0.003 A-', was used. The extent 
of averaging is therefore approximately 4 
unit cells by 4 unit cells. The bright spot at 
the intersection of the dark lines can now 
be observed easily (Fig. 5B). This provides 
definitive confirmation for the spherical 
model (Figs. 1 B and 5, A and B) (1 1 ). The 

most common defects observed in the Cub 
phase of 4 are partial dislocations and grain 
boundaries comprising arrays of such dislo- 
cations. These defects are also consistent 
with the spherical model. 

Having determined by TEM the correct 
phases for the principal Fourier compo- 
nents, the 3D distribution of the electron 
density was calculated from XRD intensities 
(Fig. 6). The surfaces represented in Fig. 6 
envelope spherical regions of the highest 
densitv. which make UD 19% of the total , . 
volume-that is, the part that is expected 
to be occupied by the aromatic dendritic 
cores. The rest of the volume contains ali- 
phatic chains of relatively uniform density 
(1 1 ). Whereas the supramolecular dendrim- 
ers at the comers and at the body center are 
s~herical. those on the face bisectors are 
slightly tetrahedrally distorted, according to 
the symmetry of the cavity in which they 
reside (1 1). 

The most notable features of the mono- 
dendritic building blocks investigated here 
are their structural simplicity (Fig. 1); abil- 
ity to self-assemble largely under thermody- 
namic control, through the combination of 
shape complementarity and demixing of al- 
iphatic and aromatic segments as an orga- 
nizing force; and their unexpectedly high 
capability to align on surfaces. This mech- 
anism of self-assemblv contrasts that of Dre- 
vious supramolecular dendrimers, which is 
dominated bv attractive s~ecific interac- 
tions (7) and resembles boih in simplicity 
and efficiency the assembly of biological 
systems (29). The ability of these cylindri- 
cal dendrimers to align by extremely simple 
and convenient techniques combined with 
their controlled stifhess and their well es- 

~und (D) indicated no astigmatism. 

Fig,& The 3D electron density distribution of the 
Pm3n Cub phase (a = 79.2 A at 80°C) of the 
spherical supramolecular dendrimers self-assem- 
bled from 16 3 monodendrons. These isoelectron 
surfaces were generated from XRD by Fourier 
synthesis with the structure factor phases deter- 
mined by TEM. 
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tablished capability to be functionalized via 
covalent and noncovalent bonding (4-6, 
9,  10) opens new strategies for design at the 
molecular level in  areas such as functional 
membranes and devices based on ionic, 
electronic, photonic, and control release. 
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The Homeotic Gene /in-39 and the Evolution of 
Nematode Epidermal Cell Fates 

Andreas Eizinger and Ralf J. Sommer* 

The fate of ventral epidermal cells differs among nematode species. Nonvulval cells fuse 
with the epidermis in Caenorhabditis elegans, whereas the homologous cells undergo 
apoptosis in Pristionchuspacificus. The homeotic genelin-39 is involved in the regulation 
of these epidermal cell fates. In Caenorhabditis, lin-39 prevents cell fusion of potential 
vulval cells and specifies the vulva equivalence group. Pristionchus vulvaless mutants 
that displayed apoptosis of the vulval precursor cells were isolated, and point mutations 
in lin-39 were identified. Thus, the evolution of these epidermal cell fates is driven by 
different intrinsic properties of homologous cells. 

Evolutionary changes in morpl~ology result 
from the modification of developmental pro- 
cesses. To study evolutionary transfortna- 
tions in development, it is essential to trace 
changes in the activity of individual cells 
and genes. The invariant development of 
free-living nematodes cotnbined with the ge- 
netic and molecular accessibility of some 
species provide an experimental system in 
which to study f~~nctional alterations in ho- 
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tnologous cells and genes during the course 
of evolution. We analyzed an evolutionary 
alteration of the fate of homologous ventral 
epidertnal cells among members of two dif- 
ferent nematode families. 

In the ventral epidermis of Caenorhabdi- 
tis elegans, 12 precursor cells [Pl.p through 
P12.p; denoted as P(1-12).p] adopt either 
nonvulval or distinct vulval cell fates in a 
position-specific manner (Fig. 1, A and B) 
( I ) .  The central cells [P(3-8).p], form a 
so-called vulva equivalence group because 
all cells have the potential to adopt vulval 
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