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Unique among known human herpesviruses, Kaposi's sarcoma-associated herpesvirus 
(KSHV or HHV-8) encodes chemokine-like proteins (vMIP-I and vMIP-11). vMIP-II was 
shown to block infection of human immunodeficiency virus-type 1 (HIV-1) on a CD4- 
positive cell line expressing CCR3 and to a lesser extent on one expressing CCR5, 
whereas both vMIP-I and vMIP-II partially inhibited HIV infection of peripheral blood 
mononuclear cells. Like eotaxin, vMIP-II activated and chemoattracted human eosino- 
phils by way of CCR3. vMIP-I and vMIP-II, but not cellular MIP-1 a or RANTES, were highly 
angiogenic in the chorioallantoic assay, suggesting a possible pathogenic role in Ka- 
posi's sarcoma. 

Kaposi's sarcoma (KS) is a highly angio- 
genic lnulticentric tumor most colnmonlv cz 

seen in immunodeficient individuals. Since 
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the acquired ilnlnunodeficiency syndrome 
(AIDS) epidemic, KS has become one of 
the most common tumors in parts of Africa 
and is the most common tumor found in 
HIV-infected individuals (1 ). Compared to 
classic KS found in oatients from Mediter- 
ranean or East European descent, KS in 
AIDS patients is a more fulminant disease: 
The angiogenic properties of the HIV-1 Tat  
protein have been proposed to enhance KS 
tumor formation (2).  

KSHV DNA is Dresent in all KS ~ L O D -  
sies, and antibodies to this virus are detect- 
able mainly in those with KS or at risk of 
developing KS (3). These data, and previ- 
ous epidemiological data indicating that an 
infectious agent is involved in KS patho- 
genesis (4), suggest that KSHV is likely to 
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play a central role in KS tumorigenesis. In 
KS biopsies, KSHV is present in most of the 
tumor cells (so-called spindle cells) and in 
endothelial cells (5). Although it appears 
that KSHV gene expression in most of 
these cells is restricted to latent genes (5), a 
proportion of endothelial and spindle cells 
in KS lesions harbor hundreds of viral par- 
ticles, suggesting that lytic viral infection 
may be necessary to drive KS lesion forma- 
tion (6) and the vMIPs are expressed in KS 
lesions (7). KSHV is also etiologically 
linked to multicentric Castleman's disease 
(MCD),  a polyclonal lymphoproliferation 
associated with prominent vascularity (8). 

Sequencing of the KSHV genome has 
demonstrated colinearity and similarity with 
the gamma-oncogenic viruses Epstein-Barr 
virus (EBV) and herpesvirus saimiri (HVS) 
(9). However, unique among known human 
herpesviruses, KSHV encodes two genes 
whose products show sequence similarity to 
the human CC chemokine family, with 
highest similarity to macrophage inflamma- 
tory protein-la (MIP-la) and RANTES: 
vMIP-I [open reading frame (ORF) K6] ex- 
hibits 37.9% amino acid sequence identity 
and vMIP-I1 (ORF K4) 41.1% amino acid 
identity to MIP-la (10). The amino acid 
identity between vMIP-I and vMIP-I1 is 
48%, and they are more closely related to 
each other phylogenetically than to cellular 
chemokines, suggesting that they have 
evolved by gene duplication within the virus 
genome rather than by independent acquisi- 
tion from the host genome. A third KSHV 
ORF (K4.1) is also related to the CC che- 
mokine family, but this gene is more distant- 
ly related and probably derived independent- 
ly from another member of the CC chemo- 
kine family (9, 1 1 ). Both vMIP-I and 
vMIP-2 are expressed in latently infected 
lymphoma cells, and their expression is in- 
duced by phorbol esters (1 0). 

Chemoattractant cytokines (chemo- 
kines) and their receptors play a fundamen- 
tal role in leukocyte migration and activa- 
tion and in hematopoiesis (1 2). The  finding 
that chemokine receptors act as cofactors 
for HIV-1 entry into CD4+ cells and that 
the CC chemokines (MIP-la ,  MIP-1 P, 
RANTES, and eotaxin) can suppress some 
strains of HIV replication in peripheral 
blood mononuclear cells (PBMCs) and che- 
mokine receptor-transfected cell lines has 
intensified interest in these proteins (13). 
vMIP-I can inhibit infection of some pri- 
mary non-syncytium-inducing (NSI) HIV 
strains when cotransfected with CCR5, the 
recently identified coreceptor for NSI 
HIV-1 strains (10). We generated synthetic 
proteins (14) of vMIP-I and vMIP-I1 and 
assessed their capacity to inhibit HIV infec- 
tion, induce calcium mobilization, and in- 
duce angiogenesis. 

Fig. 1. Inhibition of HIV replication A 
by vMIP-I and vMIP-II. (A) U87/CD4 89.6 2028 
cells stably expressing CCR3 were 
treated with the chemokines vMIP- , , , . . . . . .  I 

I, vMIP-II, RANTES, and SDF at the z g  moo - . . A  RANTES 

, 800 concentrations indicated. Treated .- .- *. SDF 

cells were challenged with the SI E 800 

dualtropic HIV-1 strains 89,6 and 3 a 2 400 

2028. Cells were fixed and immu- 
nostained for in situ p24 5 days lat- LCO ZOO 400 o ZOO 400 

er, p24-positive foci were counted, 
and average titers are shown. (B) 
PBMCs were challenged with 89.6 
and NSI SL-2 HIV-I strains in the 
absence or presence of chemo- = 

100 . A .  RANTES 
kines vMIP-I, vMIP-II, RANTES, and 5 ... - 0 .  MCP-I 

MCP-1 at the concentrations indi- 6 10 ... 
cated Cell supernatants were har- :: 
vested 9 days later and p24 levels 

20 
measured. Average p24 concen- 

0 
trations are shown. Bars represent o 50 l oo  150 200 o 50 l oo  150 200 

the standard error from triplicate Chemokine (nM) 
wells. The results are representative 
of two and three separate experiments for strains 89.6 and SL-2, respectively. 

We investigated whether vMIP-I and 
vMIP-I1 can suppress HIV-1 replication in 
U87/CD4 cells (a human glioma cell line) 
expressing HIV-1 coreceptors and in prima- 
ry PBMCs (15). To  define which chemo- 
kine receptors were most important for in- 
hibition of HIV-1 infection by the vMIPs, 
we tested U87/CD4 cells stably expressing 
either CXCR4, CCR3, or CCR5 with the 
NSI strains SL-2 and SF162 and the dual- 
tropic syncytium-inducing (SI) strains 89.6 
and 2028. SL-2 and SF162 are primary NSI, 
macrophage-tropic strains that use the 
RANTES, MIP-la ,  and MIP-1 P receptor 
CCR5 to gain entry into CDqf cells. 
Strains 89.6 and 2028 are SI dual-tropic and 
can use CXCR4 and CCR3 in addition to 
CCR5 for entry. CD4-independent infec- 
tion of an  HIV-2 strain, ROD/B, on U87 
cells expressing CXCR4 but not CD4 was 
also examined (1 6). Whereas modest levels 
of inhibition were observed with vMIP-I1 
on infection of dual-tropic HIV-1 strains by 
way of CCR5 and CXCR4 as well as on 
HIV-2 ROD/B by way of CXCR4 (17), 
vMIP-I1 potently inhibited both 89.6 and 
2028 infection, with geater than 95% inhi- 
bition at 200 nM on cells stably expressing 
CCR3 (Fig. 1A). No significant blocking of 
HIV infection by way of CCR3, CCR5, or 
CXCR4 on U87/CD4 cells by vMIP-I was 
observed (Fig. 1A) (1 7). These results syg- 
gest that vMIP-I1 binds predominantly to 
CCR3, rather than CXCR4 or CCR5. Al- 
ternatively, HIV-l infection by way of 
CCR3 may be especially sensitive to che- 
mokine inhibition. 

We next tested whether vMIP-I or vMIP- 
I1 inhibited HIV-1 infection of PBMCs. 
Strains 89.6 and SL-2 were used in these 
studies. Both vMIP-I and vMIP-I1 partially 

inhibited SL-2 infection of PBMCs (Fig. 
1B). Whereas RANTES reduced SL-2 infec- 
tion of PBMCs by more than 98% at 12.5 
nM, vMIP-I and vMIP-I1 were much less 
efficient, blocking infection by -80% and 
40%, respectively, at 100 nM. No substantial 
inhibition of 89.6 infection was observed. 
vMIP-I inhibited the CCR5-using SL-2 
strain on PBMCs but not on CCRjC  U87/ 
CD4 cells. CCR5, however, is likely to be 
expressed at substantially lower levels on 
PBMCs than on cell lines such as U87/CD4. 
This difference may explain such differential 
cell type-dependent sensitivity to chemo- 
kine inhibition. 

Because the HIV inhibition studies in- 
dicated that vMIP-I1 binds predominantly 
to CCR3, the eotaxin receptor, we investi- 
gated the potential of the vMIPs to act as 
agonists on CCR3. Because CCR3 is ex- 
pressed predominantly on eosinophils (1 8 ) ,  
we used an in vitro human eosinophil acti- 
vation assay that measures intracellular 
CaZ+ mobilization (19). vMIP-11, like 
eotaxin, was a potent activator of human 
eosinophils and was more active than MIP- 
la or RANTES (Fig. 2A). In comparison, 
vMIP-I1 had no effect on CaZ+ flux in 
human neutrophils, whereas the CXC che- 
mokines interleukin-8 (IL-8) and GROa  
were potent agonists (Fig. 2A). Despite the 
sequence similarities between vMIP-I and 
vMIP-11, vMIP-I was inactive on both eo- 
sinophils and neutrophils. We therefore ex- 
amined whether vMIPs function as receptor 
antagonists on eosinophils and neutrophils, 
as has been demonstrated for synthetic 
NH,-terminal variants of CC (for example, 
Met-RANTES) and CXC (for example, IL- 
8,-,,) chemokines (20). vMIP-I had no  
inhibitory effect on the response of eosino- 
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Fig. 2. Calcium-mobilization assay on eosinophils and neutrophils. (A) Peak 
Increase of [Ca2+], concentration in fura-2-loaded human eosinophils and 
neutrophlls in response to vMIP-I and vMIP-II; the CC chemoklnes eotaxln, 
RANTES, and MIP-I a; and the CXC chemoklnes IL-8 and GRO. Data are 
expressed as the mean i SEM of three to four separate exper~ments with 
cells purifled from different individuals. (B) Receptor desensitization of 
Ca2+ mobllizatlon in human eoslnophlls between vMIP-II and the CC 
chemoklnes eotaxln, RANTES, and MIP-la. In these experlments the 
desensitizing agent was added 150 s before the response to the second 
agonlst was measured. Data are expressed as the percentage of the 
maximal [Ca2+],induced by vMIP-II (3 nM) or eotaxin (3 nM) alone (filled col- 
umns) after treatment of the cells wlth varlous concentrations of the desensl- 
tizlng agent (vMIP-ll, 0.3 to 30 n M ;  eotaxin, 0.3 to 10 nM;  RANTES, 3 to 30 nM; 
and MIP-la, 3 to 30 nM). Values are the mean r SEM of three separate 
experiments with eosinophils purlfied from different individuals. (Insets) Rep- 

phils to eotaxln, and neither vMIP-I nor 
vMIP-I1 prevented Ca2+ mobilization in 
neutrophils induced by IL-8 (data not 
shown). 

Whereas CCR3 is the predominant che- 
mokine receptor through which eotaxin, 
RANTES, and other CC chemokines acti- 
vate eosinophils ( I S ) ,  RANTES and MIP- 
la can use C C R l  (21), which is also ex- 
pressed on eosinophils. T o  determine the 
receptor usage by vMIP-I1 on eosinophils, 
Ge performed desensitization studies. vMIP- 
I1 exhibited complete cross-desensitization 
with eotaxin, partial desensitization with 
RANTES, and no desensitization with 
MIP-la  (Fig. ZB), providing functional ev- 
idence that vMIP-I1 binds to CCR3 on 
eosinophils. 

To  show that vMIP-I1 can chemoattract 
eosinophils, we performed an in vitro che- 
motaxis assay (22). vMIP-11, but not vMIP- 
I, was chemotactic for human eosinophils 
(Fig. 3). This activity of vMIP-I1 was com- 
parable to that of eotaxin, which correlates 
with the activity to induce CaZ+ mobiliza- 
tion (Fig. 2A). 

Although angiogenesis is central in the 
pathology of KS and prominent in MCD, 
the mechanisms by which KSHV induces 
new blood vessel formation are not  
known. Angiogenesis is a complex process 
involving chemotactic migration and pro- 
liferation of endothelial cells, followed by 
lumen formation and functional matura- 
tion of the endothelium (23). Often it is 
associated with the presence of activated 
inflammatory cells. Apart from their po- 

~esensitizing 0.3 3 30 0.3 3 3 30 3 30 
agent -+- 1 10 - 1 10 - 10 - 10 

IvMIP-Ill IEotaxinl IRANTES IMIP-la1 

resentative traces of the data from a slngle experiment showing the dose- 
response relatlon between the magnitude of the response to the desensitizing 
agent and the subsequent response to the second agonlst. The desensltiza- 
tion was speciflc rather than global because none of the desensitizing agents 
reduced the response of the cells to a subsequent additlon of the complement 
fragment C5a. 

tent biological effects on leukocytes, some 
members of the chemokine family have 
been shown to have a direct effect on  
blood vessel formation. Within the CXC 
chemoklne family, proteins containing the 
NH2-terminal Glu-Leu-Arg (ELR) amino 
acid seauence motif such as IL-8 are an- 
giogenic factors, whereas non-ELR-con- 
taining proteins including IP-10 are angio- 
static (24). T o  our knowledge, there is no  
information on the angiogenic ability of 
CC chemokines. We  therefore examined 
the wotential of vMIP-I and vMIP-I1 as 
mediators of angiogenesis in the chick 
chorioallantoic membrane (CAM),  which 
is a standard in ovo assay to investigate 
angiogenic function (25, 26). 

Angiogenic responses were observed and 
photographed 3 days after implantation of a 
methylcellulose disk containing test sam- 
ples onto CAM. Most eggs implanted with 
vMIP-I or vMIP-I1 showed a clear angio- 
genic response. The positive controls used, 
vascular endothelial growth factor (VEGF) 
and phorbol 12-myristate 13-acetate 
(TPA), also induced angiogenesis as ex- 
pected (Fig. 4 and Table 1). In contrast, 
cellular MIP-la  and RANTES failed to 
induce angiogenesis in most eggs, and the 
few positive responses recorded were not as 
prominent as those for vMIPs. The potency 
of vMIPs to induce angiogenesis in chick 
embryos was demonstrated by clear angio- 
genic responses in some eggs at doses as low 
as 0.05 pg, in contrast to poor induction by 
human CC chemokines at 0.25 pg. Al- 
though it is difficult to  interpret a compar- 

ison of angiogenic activity between chemi- 
cally synthesized and recombinant proteins, 
the activity of the vMIPs was not as potent 
as that of VEGF, but more potent in the 
CAM assay than that of the ELR-CXC 
chemokine IL-8 (Table 1) .  Preliminary re- 
sults also indicate that eotaxin is not an 
inducer of angiogenesis in CAM. The find- 
ing that KSHV-encoded chemokines can 
induce new blood vessel formation in the 
chick CAM is intriguing and could have 
important implications for the role of 
KSHV in KS and MCD development. 

Our results demonstrate that the vMIPs 
are biologically active: ( i )  vMIP-I1 binds 
predominantly to CCR3, resulting in po- 
tent inhibition of HIV entry by way of this 
receptor and activation and chemotaxis of 

n- 

80- - - 
Eotaxin 
vMIP-II 

0 
.- 
U1 
$ 20- 

[Agonist] (nM) 

Fig. 3. Human eosinophll transwell chemotaxls 
assay. vMIP-II and eotaxin are chemotactic for 
human eosinophils In vltro. vMIP-I shows no ac- 
tivlty in this assay. Buffer alone is represented by a 
dashed line. 
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Table 1. Angiogenic effect of vMlPs on the chick CAM. REFERENCES AND NOTES 

Angiogenic response? Percent 1. V. Beral, in Cancer, HIV and AIDS, V. Beral, H. W. 
Dose Number of Scores 

Jaffe, R. A. Weiss, Eds. (Cold Spring Harbor Labo- 
Sample' 

(PS) embryos + 2 - ratory Press, Cold Spring Harbor, NY, 1991), vol. 10, 
score DD. 5-22: A. Wahman. S. L. Melnick. F. S. Rhame. 

vMIP-I 2.0 9 6 3 0 7.5 83 
1 .O 9 8 1 0 8.5 94 
0.5 6 4 0 2 4 67 
0.25 25 13 4 8 15 60 
0.05 17 4 ' 9  4 8.5 50 
0.01 9 2 2 5 3 33 
2.0 7 4 3 0 5.5 79 
1 .O 10 6 3 1 7.5 75 
0.5 8 4 3 1 5.5 69 
0.25 24 8 12 4 14 58 
0.05 18 7 5 6 9.5 53 
0.01 8 0 4 4 2 25 

hMIP-1 a 0.25 9 0 2 7 1 11 
RANTES 0.25 8 1 2 5 2 25 
VEGF 0.5 7 7 0 0 7 100 

0.25 6 3 3 0 4.5 75 
IL-88 1 .O 9 1 3 5 2.5 28 

0.25 7 0 2 5 1 14 
TPA 0.08 7 7 0 0 7 100 
BSA 20 8 0 0 8 0 0 
'420 

- 23 0 2 21 1 4 

'Angiogenesis induction was performed by a methylcellulose disk containing synthetically prepared vMIP-I, vMIP-II, 
human MIP-I a, and FANTES. VEGF and TPA were used as positive controls. A disk containing vehicle only or 20 kg 
of BSA was used as a negative control. tAngiogenic responses were judged by three investigators: (+) unani- 
mously positive; (2)  unclear or split judgment; (-) unanimously negative. $Scores of 1,0.5, and 0 were counted for 
(+), (k), and (-) results, respectively. Percent maximum score is the division of the score by the embryo number. 
$A CXC ELR-containing chemokine. 

eosinophils. (ii) vMIP-I1 also exhibits weak 
HIV inhibition through other chemokine 
receptors. (iii) Both vMIPs induce angio- 
genesis in chick embryos. These activities 
may have important implications in viral 
pathogenesis. vMIP-I and vMIP-I1 inhibit 
HIV replication in PBMCs, albeit modestly. 
In patients with high KSHV viral load, 
especially as seen in the lymph nodes of 

HIV-positive individuals (JO), these viral 
chemokines may affect HIV pathogenesis. 
vMIP-I1 inhibition of HIV infection by way 
of CCR3 is potent. This result is consistent 
with the report in which only vMIP-I1 was 
studied with a single HIV-1 strain (27). 
CCR3 is one of the main receptors for 
HIV-1 entry into microglia, and an anti- 
body to CCR3 can inhibit HIV-1 infection 
of microglia (28). Patients with KS or high 
KSHV viral load, or both, may be less 
likely to develop HIV-related dementias. 
The potent agonistic activity of vMIP-I1 
for eosinophils contrasts with its antago- 
nistic function shown in other cell systems 
(27). Although previous studies have 
shown that HIV Tat is angiogenic (2), this 
protein does not play a role in the patho- 
genesis of non-AIDS KS (for example, 
classic, African endemic, and posttrans- 
plant KS). In contrast, KSHV is present at 
high levels in all epidemiologic types of 
KS, and the demonstration of angiogenesis 
induced by these viral-encoded proteins is 
the first in vivo indication that KSHV- 
encoded proteins have the potential to I directly induce angiogenesis. Although it 
is unlikely that these viral chemokines are 
solely responsible for the marked vascular- 

Fig. 4. Induction of angiogenesis by vMlPs in ity seen in KSHV-associated tumors, they 
chick CAM. Methylcellulose discs containing with angiOgenic 
~ ~ 1 p - l  (A), VMIP-II (B), RANTES (c), ~ 1 p - l ~  (D), factors involved in KS spindle cell growth 
VEGF fa, and BSA fF) were irn~lanted onto 10- or or MCD develo~ment-for example, 
11 -dav-b;ld CAMS.' photoarabhs were taken 3 VEGF, basic fibroblast growth factor and 
days later. ~epresentative samples are shown. IL-6 (2, 29). 
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Caspase-%Generated Fragment of Gelsolin: 
Effector of Morphological Change in Apoptosis 
Srinivas Kothakota,* Toshifumi Azuma,* Christoph Reinhard, 

Anke Klippel, Jay Tang, Keting Chu, Thomas J. McGarry, 
Marc W. Kirschner, Kirston Koths, David J. Kwiatkowski,? 

Lewis T. Williams 

The caspase-3 (CPP32, apopain, YAMA) family of cysteinyl proteases has been impli- 
cated as key mediators of apoptosis in mammalian cells. Gelsolin was identified as a 
substrate for caspase-3 by screening the translation products of small complementary 
DNA pools for sensitivity to cleavage by caspase-3. Gelsolin was cleaved in vivo in a 
caspase-dependent manner in cells stimulated by Fas. Caspase-cleaved gelsolin sev- 
ered actin filaments in vitro in a Ca2+-independent manner. Expression of the gelsolin 
cleavage product in multiple cell types caused the cells to round up, detach from the 
plate, and undergo nuclear fragmentation. Neutrophils isolated from mice lacking gel- 
solin had delayed onset of both blebbing and DNA fragmentation, following apoptosis 
induction, compared with wild-type neutrophils. Thus, cleaved gelsolin may be one 
physiological effector of morphologic change during apoptosis. 

A conserved family of aspartate-specific 
cysteinyl proteases (caspases) has been 
identified as critical mediators of apoptosis 
in Caenorhabditis elegans and mammals ( I ,  
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2). Although multiple protein substrates of 
caspases have been found, the functional 
significance of the substrates is poorly un- 
derstood (3). We reasoned that an unbiased 
approach to determine proteins that were 
the best substrates of cas~ase-3 in vitro 
would yield a physiologically relevant sub- 
strate. Therefore. we constructed a   rote in 
library by translating a murine embryo 
cDNA librarv in vitro ( 4 )  and tested the ~, 

translated prbteins for their sensitivity to 
caspase-3 cleavage. To facilitate screening, 
we separated the cDNAs into small pools 
before in vitro translation and incorporated 
[35S]methionine into the translation mix to 

294 SCIENCE VOL. 278 10 OCTOBER 1997 www.sciencemag.org 


