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Preserved Acute Pain and Reduced Neuropathic 
Pain in Mice Lacking PKCy 

Annika B. Malmberg,* Chong Chen, Susumu Tonegawa, 
Allan I. Basbaum 

In normal animals, peripheral nerve injury produces a persistent, neuropathic pain state 
in which pain is exaggerated and can be produced by nonpainful stimuli. Here, mice that 
lack protein kinase C gamma (PKCy) displayed normal responses to acute pain stimuli, 
but they almost completely failed to develop a neuropathic pain syndrome after partial 
sciatic nerve section, and the neurochemical changes that occurred in the spinal cord 
after nerve injury were blunted. Also, PKCy was shown to be restricted to a small subset 
of dorsal horn neurons, thus identifying a potential biochemical target for the prevention 
and therapy of persistent pain. 

Neuropathic pain is a devastating conse- 
quence of nerve injury that is characterized 
by spontaneous, often burning, pain, an  
exaggerated response to painful stimuli (hy- 
peralgesia), and pain in response to normal- 
ly innocuous, for example touch, stimuli 
(allodynia). Neuropathic pain syndromes 
are among the most difficult to manage. 
Although the pain produced by tissue injury 
can usually be controlled by anti-inflamma- 
tory drugs and opioids, neuropathic pains 
such as postherpetic neuralgia, reflex sym- 
pathetic dystrophy, and phantom limb pain 
are often refractory to these treatments. 

Some studies suggest that nerve injury 
leads to neuropathic pain because it triggers 
an  N-methyl-D-aspartate (NMDA) recep- 
tor-mediated hyperexcitability of dorsal 
horn neurons in the spinal cord. Events 
downstream of the NMDA recentor. in- 

L ,  

cluding activation of various protein ki- 
nases, have also been im~licated: these are 
presumed to underlie the persistence of the 
nain (1 ). Conclusions from these studies. . . 
however, are very limited. For example, 
although there is evidence for a contribu- 
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tion of protein kinase C (PKC), those stud- 
ies not only used inhibitors that are not 
specific for PKC but they also provided no 
information about the contribution of spe- 
cific isoforms of PKC, at least 10 of which 
have been identified' (2).  In the present 
study we examined nerve injury-induced 
neuropathic pain in mice with a deletion of 
the gene that encodes for the neuronal- 
specific (gamma) isoform of PKC. 

The deletion (knock-out) of PKCy pro- 
duces viable mice with normal appearance. 
The mice have a slight ataxia, modest im- 
pairments in tests of learning and memory 
(3), and some motor incoordination (4) 
that mav be related to a defect in elimina- 
tion of multiple climbing fiber innervation 
of Purkinje cells (5). Although synaptic 
transmission appears normal, long-term po- 
tentiation is impaired (3). 

In the absence of nerve injury, we found 
no  difference in paw withdrawal responses 
to thermal or mechanical stimulation in 
mutant and wild-type mice (Fig. 1). Thus, 
transmission of acute "pain" messages was 
intact in the mutant mice. To  study pain 
behavior produced by nerve injury, we 
tightly ligated one-third to one-half of the 
diameter of the sciatic nerve; this partial 
nerve injury produces a neuropathic pain 
syndrome characterized by a marked and 
long-lasting reduction in the paw withdraw- 
al threshold to both thermal and mechani- 
cal st~mulation on the injured side (6). In 
the wild-type mice thermal response laten- 
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cies were significantly decreased by the 
third day after nerve injury; this alteration 
persisted for the 14-day observation period 
(Fig. 1A). Compared with the wild-type 
mice, the mutant mice had a significantly 
decreased thermal allodynia at all time 
points after surgery. In the wild-type mice, 
the latency to withdraw from the heat stim- 
ulus decreased to 5 to 6 s from a baseline 
response of 10 to 11 s; the latency to with- 
draw in the mutant mice was 8 to 9 s. Nerve 
injury was not completely without effect in 
the mutant mice. Compared with values 
before nerve injury, we recorded a modest, 
albeit significant, decrease in thermal with- 
drawal latencies, but the magnitude of the 
change was much less than what we record- 
ed in the wild-type mice. 

Because mechanical hypersensitivity is a 
predominant symptom of neuropathic pain 
in patients (even contact of clothes is often 
intolerable), we also studied the response to 
mechanical stimulation. Partial sciatic 
nerve injury in the wild-type mice led to a 

profound decrease of the threshold for 
evoking hindpaw withdrawal to a mechan- 
ical stimulus (von Frey hair) (Fig. 1B). This 
mechanical allodynia appeared on the third 
day after surgery and persisted for the dura- 
tion of the experiment. In contrast, we 
found no significant change of the mechan- 
ical threshold in the PKCy mutant mice 
(Fig. 1B). Thus, PKCy is essential for the 
production of mechanical allodynia after 
nerve injury. 

Peripheral nerve injury not only produces 
a neuropathic pain syndrome but also signif- 
icantly alters the neurochemistry of the ipsi- 
lateral dorsal root ganglion (DRG) and the 
spinal cord dorsal horn (7). Therefore, we 
also compared the neurochemical conse- 
quences of nerve injury in the wild-type and 
mutant mice. We focused on substance P 
(SP), a major neurotransmitter of small di- 
ameter nociceptive primary afferents, and on 
the neurokinin-1 (NK-1) receptor, which is 
targeted by SP. We also studied neuropep- 
tide Y (NPY), which is found in the dorsal 

Fig. 1. Before surgery there were no differences in A 
thermal or mechanical thresholds between wild-type 
and mutant mice. (A) In wild-type mice, nerve injury 
produced a significant reduction in paw withdrawal la- 
tencies to a heat stimulus on the injured side [P < 
0.001, repeated measure analysis of variance 
(ANOVA)]. This decrease was significantly different from 3 4 
the paw withdrawal latencies in mutant mice. Asterisks 
indicate a significant difference on the injured side be- 
tween wild-type and mutant mice (*P < 0.05, PLSD B 0 2 4 6 8 1 0 1 2 1 4  
Fisher's test). The mutant mice also displayed a modest 
but significant thermal allodynia (P < 0.05, repeated 
measures ANOVA). No difference in paw withdrawal 31.2 

latencies were observed on the noninjured side in either 
group. (8) Injury to the sciatic nerve produced a signif- $ 0.8 

icant decrease in paw withdrawal thresholds to von 
Frey hair stimulation on the injured side in wild-type (P < 

compared with baseline thresholds. Asterisks indicate 
0.05. Friedman test) but not in mutant mice (P > 0.05) 6 0.2 

0 2 4 6 8 10 12 14 
significantly lower thresholds on the injured side in wild- Days after surgery 
type mice compared with the injured side of mutant 
mice (*P < 0.05, Mann-Whitney test). No change in withdrawal latency was observed on the contralat- 
era1 side. 

Fig. 2. SP (A and B) NPY - 
(C and D), and NK-1 re- :- 
ceptor (E and F) immu- t I 

noreactlvlty at the L4 spi- 
nal segment of wild-type 
(A, C, E) and mutant mlce - 

(B, D, F). The nerve injury NPY 
was on the right side. The 
largest change in SP. (& 
NPY, and NK-1 receptor 
immunoreactivity oc- 
curred in the wild-type 
mice. The increase in 
NK-1 receptor immuno- N K1- 
reactivity was concen- 
trated in the medial part , 

of lamina I (arrowhead). 
Scale bar, 300 km. 

horn in normal animals but not in DRG 
cells; after nerve injury both NPY mRNA 
and peptide are expressed in DRG neurons 
(7). Consistent with many previous studies 
in the rat, in the wild-type mice we found 
that partial nerve injury produced a marked 
decrease in SP and an increase in NPY and 
NK-1 receptor immunoreactivity in laminae 
I and I1 of the dorsal horn ipsilateral to the 
sciatic nerve injury (Fig. 2). The alteration 
in the amounts of these neurotransmitter 
and receptor markers was greatest in the 
spinal segments that receive primary afferent 
i n ~ u t  from the sciatic nerve (namelv. lumbar , . 
segments L4 and L5), but the increase in the 
number of NK-1 receptors also extended sev- 
eral segments rostra1 and caudal to these 
sites. However, we found a significantly 
smaller nerve injury-induced alteration of 
SP, NK-1, and NPY immunoreactivity in the 
mutant compared with the wild-type mice 
(8) (Figs. 2 and 3). In other words, the 
almost complete failure of the mutant mice 
to develop the neuropathic pain syndrome 
after nerve injury was paralleled by a very 
limited neurochemical reorganization in the 
dorsal horn of the spinal cord. 

Because the NK-1 receptor is exclusively 
located in neurons that are postsynaptic to 
the nerve injury (9), it provides a marker of 
transneuronal changes produced by periph- 
eral nerve injury. In contrast, changes in SP 
and NPY could occur both pre- and 
postsynaptically (7). It was thus important 
to specifically evaluate the DRG response 
to nerve iniurv. Furthermore. because Dar- . , 
tial nerve injury produces a variable effect 
in the DRG, it can be difficult to evaluate 
quantitatively. Thus, in a second series of 
experiments, we completely transected the 
sciatic nerve to produce a maximal response 
and then examined both the DRG and 
dorsal horn. As expected, this injury pro- 
duced maximal neurochemical changes, in- 
cluding a significant decrease in SP and an 
increase in NPY immunoreactivity in the 
dorsal horn of the wild-type mice (10). In 
the mutant mice, however, despite there 
being a total nerve transection, we again 
found minimal change in the dorsal horn of 
the spinal cord (10). In contrast, the neu- 
rochemical response of the DRG to injury 
did not differ in the wild-type and mutant 
mice. Specifically, in the two groups of mice 
we recorded comparable decreases in the 
number of DRG neurons that expressed SP 
and a comparable up-regulation of NPY- 
immunoreactive neurons ( 10). The fact . , 

that we found differences in the dorsal horn 
but not in the DRG suggests that the re- 
sponse of the primary afferent to injury was 
not altered in the mice that lack PKCy. 
Rather, the PKCy deletion was manifest as 
a significant reduction of the neurochemi- 
cal response of postsynaptic neurons to 
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nerve injury. 
Persistent pain states can arise from tis- 

sue as well as nerve injury (I 1 ). A selective 
deficit is found in the development of in- 
flammation and tissue injury-induced "no- 
ciceptive" pain in mice that carry a null 
mutation in the gene that encodes the neu- 
ronal-specific isoform of the type I regula- 
tory subunit (RIP) of protein kinase A 
(PKA) (12). The latter animals, however, 
showed no change in the neuropathic pain 
behavior produced by partial nerve injury. 
To determine whether PKCy also contrib- 
utes to nociceptive pain, we studied the 
PKCy mutant mice in an inflammation 
model produced by hindpaw injection of 
dilute formalin (1 3). Consistent with acute 
pain responses being unaffected by the 
PKCy deletion, we found that pain behav- 
ior in the first vhase of the formalin test. 
which is presumed to result from direct 
activation of small diameter primary affer- 
ent "pain" fibers, did not differ in wild-type 
and mutant mice (13). However, the sec- 
ond, prolonged phase of nociceptive pain 
behavior, which is driven largely by tissue 
inflammation, was attenuated (13). The 
PKCy mutant mice also showed reduced 
swelling of the formalin-injected paw. In 
agreement with the reduced inflammation 
resulting in decreased nociceptive inputs to 
the central nervous system, in the dorsal 
horn of the spinal cord ipsilateral to the 
injury we recorded significantly less Fos im- 
munoreactivity, a marker of neuronal activ- 
ity, in mutant compared with wild-type 
mice (14). Finally, compared with wild-type 
mice, we found that the PKCy mutant mice 
displayed a significant reduction (44%) of 
plasma extravasation induced by intrader- 
ma1 injection of capsaicin into the paw 
(15). These results underscore the differ- 

phology nor the numbers of myelinated or 
unmyelinated axons differed between mu- 
tant and wild-type mice (1 7). Thus, the 
behavioral and neurochemical phenotype is 
likelv to be due to the absence of PKCy 
rather than to a developmental change sec- 
ondary to its deletion. 

An important insight into the possible 
mechanism through which PKCy influenc- 
es spinal nociceptive processing was re- 
vealed in our subsequent immunocyto- 
chemical studies of the distribution of the 
classical set of PKC isozymes (a, PI, PII, 
and y). Specifically, although the first three 
were distributed rather homogeneously in 
DRG, in sympathetic ganglia, and in all of 
the superficial layers of the dorsal horn of 
the spinal cord, the spinal cord distribution 
of PKCy was highly restricted (18). It was 
only found in a subset of interneurons in 
the inner part of the substantia gelatinosa 
(lamina 11) of the dorsal horn (Fig. 4). 
Because PKCy was not detectable in DRG 
neurons, it is very unlikely that the pheno- 
type observed resulted from long-term 
changes in the injured primary afferent. In 
fact, because the neurochemical response of 
the DRG to injury, namely, decreased 
amounts of SP and increased amounts of 
NPY, was not altered in the mutant mice, 
we conclude that nerve injury-evoked sig- 
nals were transmitted faithfully to the DRG 
(presumably by means of retrograde axonal 
transport) in both wild-type and mutant 
mice. Furthermore, because primary affer- 
ents do not express the NK-1 receptor (9),  
it follows that nerve injury-induced chang- 
es in the neurochemistrv of the dorsal horn 
(for example, NK-1 receptor up-regulation) 
involve PKCy-containing interneurons 

that are downstream of the vrimarv afferent. 
The functional target of these interneurons 
must include neighboring dorsal horn neu- 
rons that express the NK-1 receptor. Al- 
though we cannot rule out a contribution of 
other PKC isoforms, we suggest that PKCy- 
mediated phosphorylation of substrate pro- 
teins in intemeurons of the inner part of 
the substantia gelatinosa is critical and 
probably necessary for the full development 
of the neuropathic pain state produced by 
peripheral nerve injury. 

The concomitant reduction of the be- 
havioral and anatomical resvonse to nerve 
injury points to the superficial dorsal horn 
as the critical locus of the PKCy contribu- 
tion to neuropathic pain, but it is not clear 
how a deletion of PKCy in these interneu- 
rons resulted in inflammation deficits. De- 
creased central sensitization (1 9) could ac- 
count for the reduction of tissue injury- 
induced pain, but it could not explain the 
reduction of neurogenic inflammation. It is 
conceivable that a deletion of PKCy in the 
dorsal horn reduces interneuron-generated 
dorsal root reflexes (20); this would de- 
crease the release of peptides from the pe- 
ripheral terminals of primary afferents and 
thus reduce neurogenic inflammation. On  
the other hand, because inflammation can 
be influenced by sympathetic and hormonal 
factors (21, 22), including circulating cor- 
ticotrophin releasing factor, it is possible 
that the reduction of tissue iniurv-evoked , , 

pain and neurogenic inflammation resulted 
from deletion of PKCy at multiple sites in 
the central nervous system. 

Interneurons of the inner part of lamina 
I1 differ considerably from those located 
dorsally, in lamina I and the outer part of 
lamina 11. Those in the inner part of lamina 

. , 

ence in the pathophysiology of tissue inju- 
ry- and nerve injury-evoked persistent 
pain states. Nociceptive pain that results 
from tissue injury involves both PKA and 
PKC (and possibly other second messenger 
systems). In contrast, a full-blown neuro- 
pathic pain state can be produced by nerve 
injury even when PKA RIP is absent, but 
deletion of PKCy prevents the develop- 
ment of this neuropathic pain condition. 

Although PKCy expression can only be 
detected 7 days after birth and reaches max- 
imal levels by 28 days of age (16), the 
decreased neuropathic pain behavior and 
neurochemical reactivity in the mutant 
mice could have resulted from a develop- 
mental abnormality that reduced the num- 
ber of small diameter primary afferent 
"pain" fibers. To address this possibility, we 
used electron microscopy to count the num- 
bers of myelinated and unmyelinated axons 
in the L5 dorsal root of mutant and wild- 
type mice. We found that neither the mor- 

- 
SP NPY NK-1 

Fig. 3. Nerve injury-evoked changes in SP, NPY, 
and NK-1 receptor immunoreactivity in the dorsal 
hom of the spinal cord in PKCy mutant (white 
bars) and wild-type (black bars) mice. Data are 
presented as the mean ratio in percent of immu- 
noreactivity + SEM between the nerve-injured 
and the noninjured side at 14 days after the nerve 
injury (8). A value lower than 100% indicates that 
the injured side contained less immunoreactivity 
than the noninjured side; a value greater than 
100% indicates that there is an increase of immu- 
noreactivity on the injured side. Asterisks indicate 
significant differences between wild-type and 
PKCy mutant mice with PLSD Fisher's test (*P < 
0.05; **P < 0.01). 

T 

: D 

Fig. 4. Distribution of PKCa (A), PKCPl (B), 
PKCPll (C), and PKCy (D) immunoreactivity in the 
spinal cord of wild-type mice (6). The arrowheads 
in (A), (B), and (C) point to axonal staining that 
probably originates in the DRG. Asterisks identify 
immunoreactivity of axons located in the cortico- 
spinal tract, which in rodents is found in the base 
of the posterior columns. Only the PKCy staining 
is confined to intemeurons of the inner part of 
lamina II. Scale bar, 200 km. 
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I1 (where PKCy is concentrated) receive a 
selective input from a neurochemically dis- 
tinct population of unmyelinated primary 
afferents that express an adenosine triphos- 
phate-sensitive P2X3 receptor, bind the 
lectin Bandeiraea simplicifolia, and unique- 
ly contain a fluoride-resistant acid phospha- 
tase in their central terminals (23). Most . , 

importantly, in contrast to the "painH-re- 
sponsive neurons of the overlying lamina I 
and outer lamina 11, neurons of inner lam- 
ina I1 respond preferentially to non-noxious 
inputs (24). Thus, PKCy-regulated changes 
in the processing of non-noxious inputs by 
dorsal horn neurons may be critical to the 
development of neuropathic pain after 
nerve injury. 

From a clinical perspective, the very re- 
stricted spinal cord location of the PKCy- 
containing interneurons is advantageous. If 
selective inhibitors of PKCy can be devel- 
oped, it may be possible to alleviate nerve 
injury-induced neuropathic pain states 
without the profound side effects that are 
inevitable with nonselective inhibitors of 
PKC. Moreover, because acute pain re- 
sponses were not affected in the mutant 
mice, selective inhibitors of PKCy would 
not interfere with the important, protective 
function that acute pain serves. 
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Structural Requirements for Glycolipid Antigen The structures of the lipid and carbohy- 

Recognition by CDl b-Restricted T Cells drate moieties of the antigenic glycolipid 
were determined separately. The products 
resulting from alkaline hydrolysis o? the an- 

D. Branch Moody, Bruce B. Reinhold, Mark R. GUY, tigen were partitioned and recovered sepa- 
Evan M. Beckman,* Daphney E. Frederique, rately from organic and aqueous phases. 

Stephen T. Furlong,? Song Ye, Vernon N. Reinhold, The organic phase lipids coeluted on high- 

Peter A. Sieling, Robert L. Modlin, Gurdyal S. Besra, pressure liquid chromatography (HPLC) 
with mycobacterial mycolic acids (4), and 

Steven A. PorcelliS the aqueous phase contained a single prod- 

The human CDl b protein presents lipid antigens to T cells, but the molecular mechanism 
is unknown. Identification of mycobacterial glucose monomycolate (GMM) as a CDl b- 
presented glycolipid allowed determination of the structural requirements for its recog- 
nition by T cells. Presentation of GMM to CDl b-restricted T cells was not affected by 
substantial variations in its lipid tails, but was extremely sensitive to chemical alterations 
in its carbohydrate or other polar substituents. These findings support the view that the 
recently demonstrated hydrophobic CDl groove binds the acyl chains of lipid antigens 
relatively nonspecifically, thereby positioning the hydrophilic components for highly 
specific interactions with T cell antigen receptors. 

H u m a n  CDI proteins are a family of non- 
polymorphic transmembrane glycoproteins 
expressed in association with Pz-micro- 
globulin on the surface of antigen-present- 
ing cells (APCs) (1, 2). Unlike antigen- 
presenting molecules encoded in the major 
histocompatibility complex that present 
peptide antigens to T cells, at least two 
human CD1 proteins (CDlb and CDlc) 
mediate specific T cell recognition of bac- 
terial lipid and glycolipid antigens (3-6). 
Two classes of CD1-restricted l i ~ i d  anti- 
gens-mycolic acids and phosphoglycolip- 
ids such as phosphatidylinositol mannosides 
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(PIMs) or lipoarabinomannan (LAM) (4, 
5)-have been identified. To find other 
antigens presented by the CDl  system, we 
established additional T cell lines s~ecific 
for mycobacterial lipid antigens. Analysis of 
the CD4-CD8- TCRaP+ T cell line 
LDN5, isolated from a skin biopsy of a 
cutaneous reaction to M~cobacterium lebrae 
antigen, revealed evidence for a third class 
of CD1-restricted lipid antigens (7). 

LDN5 proliferated to only one lipid frac- 
tion separated by preparative thin-layer 
chromatography (TLC) from organic ex- 
tracts of M .  lebrae and cross-reacted strong- - 
ly with a lipid of identical retardation factor 
(R,) extracted from M .  phlei (8). TLC stain- 
ing indicated that the lipid contained car- 
bohydrate (anthrone positive) but not 
phosphate (molybdenum negative), distin- 
guishing this antigen from the two previ- 
ously described classes of CDl-restricted 
antigens. Proliferative responses to the pu- 
rified glycolipid were observed only for 
LDN5, but not for a panel of 14 other T cell 
lines, ruling out a nonspecific T cell-stimu- 
lating activity (Fig. 1A). LDN5 lysed anti- 
gen-pulsed C1R B lymphoblastoid cells 
transfected with CDlb but not mock-trans- 
fected cells, indicating that the antigen- 
specific response was mediated by CDlb 
(Fig. 1B). 

uct that was identified as glucose by gas 
chromatography (GC). This composition 
analysis suggested that the glycolipid anti- 
gen was glucose monomycolate (GMM), a 
previously described mycobacterial cell wall 
component consisting of a single glucopyr- 
anoside residue esterified at its sixth carbon 
to ~nycolic acid (9) .  

Electrospray ionization mass spectrosco- 
py (ESI-MS) analysis of the intact glycolip- 
id revealed a predominant ion at a mass-to- 
charge ratio ( m l z )  of 1382, corresponding to 
GMM containing a monounsaturated, CBO 
wax-ester mycolic acid (Fig. IC)  (10). 
GMM was separately isolated from treha- 
lose dimycolate (cord factor) treated with 
aqueous acid, which released intact GMM 
by cleavage at the a-glycosidic linkage 
(1 1 ) .  Cord factor-derived GMM stimulat- 
ed LDN5 with a dose response that was 
nearly identical to that of the GMM puri- 
fied directly from M .  phlei (Fig. ID). Thus, 
the antigenic glycolipid recognized by 
LDN5 was isolated from three independent 
sources and shown to be GMM, the proto- 
type for a third class of CD1-restricted an- 
tigens, mycolyl glycolipids. 

We determined the role of the lipid por- 
tion of GMM in T cell recognition by iso- 
lating GMM from mycobacterial species 
that differ in mycolic acid composition. M y -  
cobacterium bowis BCG, M .  fortuitum, M .  
smegrnatis, and M .  phlei produce GMMs 
consisting of glucose esterified to mycolic 
acids that vary in acyl chain length and the 
presence or absence of R group substitu- 
tions, double bonds, and cyclopropane rings 
(1 2). LDN5 responded to each of these 
different GMMs at equivalent doses, indi- 
cating that the naturally occurring structur- 
al variations of the hydrophobic tails of the 
antigen were unlikely to determine specific 
T cell responses (Fig. 2A). This result was 
definitively confirmed by the CDlb-re- 
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