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by electroporating LKLF*/~ neo” ES cells with the
hygro" targeting vector. Transfectants were selected
by growth in hygromycin B (150 mg/ml) and gancy-

clovir (1 mM), and DNA samples from ES cell clones
were characterized by Southern blot analysis as de-
scribed above.

24. Single-cell suspensions of lymphocytes (0.5 X 10° to
1.0 X 108 cells) were washed in phosphate-buffered
saline (PBS) with 0.1% sodium azide and stained in
PBS and 0.1% bovine serum albumin for 30 min on
ice with phycoerythrin (PE)-, fluorescein isothiocya-
nate (FITC)-, and Cy-Chrome—conjugated antibodies.
The antibodies used in these experiments are the fol-
lowing: anti-CD4 (RM4-5), anti-CD8 (53-6.7), anti-
CD45R/B220 (RA3-6B2), anti-IgM (II/41), anti-CD44
(IM7), anti-L-selectin (MEL-14), anti-CD69 (H1.2F3),
anti-CD25 (3C7), anti-CD28 (37.51), anti-Fas (Jo2),
and anti-FasL (NOK-1) (PharMingen). Flow cytometric
analysgs were performed on a FACScan (Becton
Dickinson). In two-color flow cytometric analyses, gat-
ing for viable cells was performed with propidium io-
dide exclusion. Each plot represents the analysis of
more than 104 events with WinMDI 2.0.7 software.

25. TUNEL assays and -CD3 immunohistochemistry

were performed on frozen sections according to pro-
cedures previously described (79). Photomicro-
graphs were obtained with a Zeiss Axioskop. Splenic
T cell viabilities were assayed by simultaneous stain-
ing with 7-amino-actinomycin D and PE-conjugated
mAb to CD4 and FITC-conjugated mAb to CD8
(Pharmingen) (7).

26. We thank C. Clendenin, and K. Sigrist for technical
assistance with the preparation of chimeric mice; M.
Lu and D. Baunoch for technical assistance with
histological analyses; P. Lawrey and L. Gottschalk
for help with the preparation of the manuscript and
illustrations; M. Parmacek, J. Bluestone, E. McNally,
and M. C. Simon for helpful discussions; R.
Anandappa for technical assistance with LKLF anti-
body generation; and J. Auger for technical assist-
ance with FACS analysis. Supported in part by a
grant to J.M.L. from NIH (A129637) and by the Can-
cer Center of the University of Chicago.

6 May 1997; accepted 1 August 1997

Aggregation of Huntingtin in Neuronal
Intranuclear Inclusions and Dystrophic
Neurites in Brain

Marian DiFiglia,” Ellen Sapp, Kathryn O. Chase,
Stephen W. Davies, Gillian P. Bates,
J. P. Vonsattel, Neil Aronin

The cause of neurodegeneration in Huntington’s disease (HD) is unknown. Patients with
HD have an expanded NH,-terminal polyglutamine region in huntingtin. An NH,-terminal
fragment of mutant huntingtin was localized to neuronal intranuclear inclusions (Nlls) and
dystrophic neurites (DNs) in the HD cortex and striatum, which are affected in HD, and
polyglutamine length influenced the extent of huntingtin accumulation in these struc-
tures. Ubiquitin was also found in Nlls and DNs, which suggests that abnormal huntingtin
is targeted for proteolysis but is resistant to removal. The aggregation of mutant hun-
tingtin may be part of the pathogenic mechanism in HD.

The pathology of HD is marked by a pref-
erential loss of neurons in the striatum and
cortex (1). The genetic mutation is an un-
stable and expanded CAG repeat in the
gene that encodes huntingtin (2). Larger
polyglutamine expansions in huntingtin are
associated with earlier onset and increased
severity of the disease (3). Because mutant
huntingtin is expressed throughout the
brain in HD (4), its involvement in selec-
tive cell death in the striatum and cortex is
unclear.

Two pathogenic processes have been
suggested as the basis for neurodegenera-
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tion in HD. One process involves interac-
tion of mutant huntingtin with other pro-
teins to produce a change of function.
Alternatively, mutant huntingtin might
homodimerize (5) or heterodimerize (6) to
build large, poorly soluble protein aggre-
gates. Proteins that interact more avidly
with NH,-terminal products of mutant
huntingtin than with wild-type have been
identified but are found throughout the
brain with no preferential distribution in
those regions affected in HD (7). Analysis
of the HD brain (8) with an antiserum
that recognizes an internal region of hun-
tingtin in wild-type and mutant proteins
showed that the subcellular distribution of
huntingtin in the cytoplasm of neurons
was abnormal, but the contribution of mu-
tant huntingtin to these changes was un-
clear. In a tecent study of HD transgenic
mice expressing an NH,-terminal mutant
huntingtin fragment with 115 to 156 glu-
tamine repeats, we found that intraneuro-
nal nuclear inclusions reactive to NH,-
terminal antiserum to huntingtin devel-

SCIENCE « VOL. 277 * 26 SEPTEMBER 1997 ¢ www.sciencemag.org



oped in the brain (9).

We therefore tested the hypothesis that
abnormal aggregates of the NH,-terminal
region of the HD protein accumulate se-
lectively in neurons that degenerate in
HD. We analyzed immunohistochemistry
in postmortem brain tissue from controls
(n = 5) and from HD patients with juve-
nile (n = 3) and adult onset (n = 6) HD
(10). We used an antiserum to huntingtin
(Ab 1) raised against an NH,-terminal
epitope of huntingtin amino acids 1 to 17,
which are proximal to its polyglutamine
region, and compared these results with
those obtained with an antiserum directed
to an internal site at amino acids 585 to
725 in huntingtin (Ab 585) (11). Ab 1
has been characterized in biochemical and
immunohistochemical studies of human
and rodent brains (4, 11) and in immuno-
blots it detects wild-type and mutant hun-
tingtins in HD brain (4). In neurons of the
HD cortex, Ab 1 produced intense label-
ing for huntingtin localized to neuronal
intranuclear inclusions (hNIIs; Fig. 1A).

hNIIs were positioned variably throughout

the nucleus, adjacent to (Fig. 1B) or dis-
tant from the nucleolus (Fig. 1C). They
were significantly larger (P < 0.0001; n =
65; mean = 7.1 * 3.0) than the nucleolus
(mean = 4.0 * 1.6) in mean cross-sec-
tional area. Compared with the nucleolus,
which filled 0.8 to 18% of the cross-sec-
tional area of the nucleus, hNIIs in about
30% of neurons covered 20 to 45% of
nuclear cross-sectional area (Fig. 2B).
Analysis of the ratios of the major and
minor axes of hNIIs (n = 245) revealed
that about 55% were spherical, 30% were
ovoid, and 15% were elliptical (12). One
hNII per cell was most common but two or
three per neuron were also seen in 5 to 7%
of labeled neurons (Fig. 1C). Neurons
with hNIIs were detected in all cortical
layers and were more frequent in juvenile
patients (38 to 52% of total neurons) than
in adult patients (3 to 6% of total neu-
rons) (Fig. 2A). They were not found in
the cortex of adult patient A4, who was
positive for the HD allele but presymp-
tomatic at the time of death.

hNIIs were also seen in medium-sized

neuroris in the striatum (Fig. 1D) but were -

not present in neurons of the HD globus
pallidus or cerebellum. hNIIs were absent in
the cortex, striatum, and other areas in
brains of controls.

We found intense staining in extracel-
lular structures that had a morphology
consistent with dystrophic neurites
(hDNs) (Fig. 1E). hDNs were present pre-
dominantly in cortical layers 5 and 6,
where they were distributed unevenly in
patches of neuropil and sometimes aligned
in linear arrays reminiscent of processes.
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Fig. 1. Huntingtin immunoreactivity in hNlls and
hDNs in HD brain. (A) Cortex of juvenile patient
J13 shows numerous hNlls prominently stained.
(B and C) Cortical pyramidal neurons in juvenile
patient J12 shown with Nomarski optics contain
one (B) and two (C) hNlls. The nucleolus in each
cell is unlabeled. (D) Striatal neurons with hNlls in
juvenile patient J11. (E and F) hDNs in the cortex
of adult HD patient A12 (E) and presymptomatic
adult patient A4 (F), who had the HD gene. (G)
Cortical neurons stained with Ab 585 show stain-
ing in cytoplasm but not in Nlls. A, bar = 50 pm;
B-G, bars = 10 um. i

They were spherical or slightly ovoid and
occasionally had thin extensions. Double
labeling for huntingtin and neurofilament
protein (10) showed that hDNs were con-
tained within or continuous with neuro-
filament labeled axonal processes (Fig.
2C). hDNs had a mean length of 5.0 =+ 1.7
pm (n = 256) and the largest were 10 to
12 pm. They were more prevalent in the
cortex of patients with adult onset than in
juvenile-onset patients (Fig. 2A). Some
hDNs were detected in layer 6 cortex of
the presymptomatic adult patient A4 (Fig.
1F). hDNs were seen in the HD striatum
of adult and juvenile patients but they
were absent from control brains.
Immunohistochemical analysis with
Ab 585 showed labeling of the cytoplasm
of neurons in control and HD brains (Fig.
1G) (8) but no staining of NIIs and DNs

in neurons of the HD cortex (Fig. 1G),

striatum, globus pallidus, or cerebellum.
Altogether, the results suggested that the
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Fig. 2. Analysis of hNIls and hDNs in HD cortex. (A)
Frequencies of hNIls (0) and hDNs () differ in
juveniles and adults. Two other adult HD patients
had results qualitatively similar to those of the adult
patients presented here. (B) Percent of nuclear
cross-sectional area occupied by hNII () and nu-
cleolus (W) is compared in HD cortical neurons. (C)
Double-label immunofluorescence shows hDN (ar-
rows) positioned within a neurofilament labeled ax-
onal process.

hNIIs and hDNs recognized by NH,-ter-
minal antibody Ab 1 contained a cleaved
fragment of mutant huntingtin not seen
with Ab 585 (13). To further explore this
idea, we examined nuclear extracts from
the cortex of controls and juvenile HD
patients by Western blot analysis (14). As
expected in the controls, full-length hun-
tingtin, which migrates at about 350 kD,
was present in total protein extracts but
not the nuclear fractions, consistent with
the absence of nuclear localization of full-
length huntingtin. A prominent band mi-
grating at about 40 kD in total protein
homogenates and in soluble nuclear ex-
tracts was detected in the HD cortex but
not in the control cortex (Fig. 3). Togeth-
er, our immunoblot and immunohisto-
chemical data suggest that an NH,-termi-
nal fragment of mutant huntingtin trans-
locates to the nucleus and contributes to
the formation of NIIs (15).

Recent observations have shown that
huntingtin can be cleaved in its NH,-
terminal region by apopain, a cysteine pro-
tease involved in ubiquitin-dependent
proteolysis, and that the rate of cleavage
increases with the length of the polyglu-
tamine tract of huntingtin (16). Because
the NH,-terminus of mutant huntingtin is
a substrate for apopain (16) and is ubiqui-
tinated in lymphocytes (17) and because
DNs containing ubiquitin have been ob-
served in the HD cortex (18), we specu-
lated that NIIs and DNs in HD cortical
tissue would be detected with ubiquitin
antiserum. We found NIIs (Fig. 4, A and
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B) and DNs (Fig. 4, C and D) with ubiqg-
uitin immunoreactivity in the HD cortex.
Double-labeling for ubiquitin and hun-
tingtin in the same section showed that
the proteins were colocalized in NIIs and
DNs (Fig. 4E). The frequency of ubig-
uitin-positive NIIs and DNs was directly
proportional to the frequency of hNIIs and
hDNs in adjacent brain sections from the
same HD patients (Fig. 4F). However,
there were usually fewer NIIs and DNs
labeled with ubiquitin than with hunting-
tin (19). These results demonstrate that
the mutant huntingtin aggregates in NIIs
and DNs are ubiquitinated. Consistent
with this finding are observations in HD
transgenic mice that show the nascent
nuclear inclusions contain huntingtin and
ubiquitin immunoreactivity (9).

Electron microscopic study showed
that hNIIs were highly heterogeneous in
composition and contained a mixture of
granules, straight and tortuous filaments,
and masses of parallel and randomly ori-
ented fibrils (Fig. 5, A, C, and D). There
was no membrane separating the hNII
from the surrounding nucleoplasm. hDNs
identified at the ultrastructural level con-
tained labeled granules and filaments. A

Fig. 3. Western blot-of huntingtin in control and
HD cortex analyzed with NH,-terminal Ab 1. Full-
length wild-type huntingtin in controls (C1, C8,
C18, and C19) and wild-type and mutant hunt-
ingtins in juvenile HD patients (J6, J11, J12, and
J13) migrate at about 350 kD (small arrow) in total
protein homogenates ( T). A fragment of about 40
kD (large arrow) is present in total protein homog-
enates (T) and soluble nuclear extracts (N) of HD
patients but not in controls. Immunoreactive
bands < 40 kD in the HD brain may be degraded

rim of cytoplasm surrounded the aggregate
and contained an accumulation of or-
ganelles, especially mitochondria (Fig.
5B). A granulofilamentous consistency
has also been noted in nuclear inclusions
identified in biopsy tissue from the HD
cortex and striatum (20) and in cortical
neurons of the HD transgenic mouse (9) as
well as for ubiquitin-positive DNs of the
HD cortex (18). Thus, based on ultra-
structure the same mechanism may be in-
volved in the accumulation of mutant
huntingtin in NIIs and DNs (21).

The presence of hNIIs in symptomatic
HD patients and their absence in a pre-
symptomatic adult favors the idea that
hNIIs are closely linked to the onset of the
disease. In accordance with the patient
data, transgenic mice develop nuclear in-
clusions in the cortex and striatum (and in
some other regions) just before the appear-
ance of a neurological HD-like phenotype
(9). The prevalence of hDNs in deep lay-
ers of cortex correlates with greater neu-
rodegeneration in these layers (22), and
their appearance in a presymptomatic
adult suggests that they precede clinical
onset. We found hDNs associated with
neurofilament-positive  axonal fibers,
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products of the 40-kD fragment, other NH,-terminal fragments of huntingtin with different sites of
cleavage, or a fragment of wild-type huntingtin. The nuclear fractions of patients J11 and J12 contain a
small amount of full-sized mutant huntingtin, which suggests that uncleaved mutant huntingtin may also
translocate to the nucleus. Isolation of nuclear proteins separate from cytoplasmic proteins is shown by
the absence of a-tubulin in soluble nuclear extracts. Molecular mass markers are on the left.
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Fig. 4. Ubiquitin and huntingtin immunoreactivity in Nlls and 0
DNs in the HD cortex. (A and B) Ubiquitin-labeled pyramidal PR R

cells show one large and two small Nlls, respectively. (C and D) Large ubiquitin-positive DNs are
shown, including one with a characteristic tail-like process. Bar = 10 pum. (E) Confocal immunoflu-
orescence microscopy shows colocalization of huntingtin and ubiguitin in a NIl (arrows, top) and in a
DN (bottom). (F) Comparison of the frequency of Nlls and DNs, respectively, with huntingtin (CJ) and
ubiquitin () based on analysis of adjacent stained sections. Number of ubiquitin-labeled Nlls and
DNs is directly proportional to but less frequent than the number with huntingtin in most HD patients.
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which agrees with evidence that DNs are
distended axon terminals (23). The
marked difference in occurrence of NIIs
and DNs in juvenile and adult HD pa-
tients suggests that CAG repeat number
influences development of these neuro-
pathological features, which might ac-
count for the distinct clinical phenotypes
of these two groups of patients (24). The
shared features of other neurodegenerative
diseases with CAG expansions and HD
(25) suggest that the formation of nuclear
inclusions and DNs may be a common
pathogenic pathway.

Because brain regions affected in HD
contained hNIIs and hDNs, the formation
of these structures is directly implicated in
HD pathogenesis. The irreversible aggre-
gation of mutant huntingtin in one of the
ways recently proposed (5, 6) would pre-
vent its removal from cells. Neuronal dys-
function could arise because the aggre-
gates physically interfere with the normal
activities of the neuron or bind to and
render inactive other polyglutamine-en-
riched proteins such as transcription fac-
tors in RNA synthesis or other huntingtin
interacting proteins important for cell sur-
vival (7, 26). The presence of ubiquitin in
NIIs and DNs suggests that both structures
are targets for ubiquitin-dependent prote-
olysis (27), although the less frequent oc-
currence of ubiquitin than of mutant hunt-

P iy

Fig. 5. Electron microscopy of hNlls and hDNs in
the HD cortex with immunoperoxidase labeling.

(A) hNIl in a cortical neuron appears as a dense
aggregate with no limiting membrane separating it

from the nucleoplasm. (B) hDN contains an aggre-

gate of immunoreactive granules and filaments,

which is surrounded by a rim of cytoplasm where

mitochondria are accumulated. (C) Higher magni-

fication of Nll in (A) shows the presence of labeled

granules and filaments within the inclusion. (D)

Serial section of hNIl in (A) and (C) shows fibrils

organized in random and parallel arrays. Bars =

1.0 pm.
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ingtin suggests that ubiquitin-dependent
proteolysis is incomplete (28). Therapeutic
approaches that inhibit aggregation of mu-
tant huntingtin or increase the efficiency of
its ubiquitin-dependent proteolysis may be
helpful in the treatment of HD. -
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ings were scanned into a computer and the cross-
sectional area and major and minor axis for each
structure were determined by using NIH Image
software. To determine the frequency of DNs with
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