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I n  eukaryotic cells, the methylation state of 
the base cytosine can be inherited without 
altering genetic material per se (1 ). Thisun- 
usual-or "e~ieenetic"-form of inheritance 
generates paGrns of DNA methylation that 
modulate overall genomic patterns of chro- 
matin organization and gene expression. On 
page 1996 of this issue (2), Chuang et al. 
provide a potentially important entde for 
understanding how, in humans, these pat- 
terns of DNA methylation are established 
and maintained. Further, their results show 
how epigenetic and genetic aspects of cancer 
might be married through events that con- 
trol the cell cycle. 

In higher order eukaqotes, DNA methyla- 
tion and DNA-protein interactions together 
organize the genome into transcriptionally 
active and inactive zones (3). This oreaniza- . . " 
tional role is facilitated by an asymmetric pat- 
tern of DNA methylation. DNA methylation 
is absent in Drosophla, Caenorhabditis elegans, 
and yeast, but appeared as the vertebrate ge- 
nome became more complex. Concurrently, 
during evolution, the CpG dinucleotide, the 
principal site of DNA methylation, has been 
selectively depleted through conversion of 
methvlated cvtosines to thvrnidines via a 
deamination process (3). The human ge- 
nome has only 10% of the expected fre- 
quency of CpG's, and 70 to 80% of these are 
methylated (3). However, small regions of 
DNA remain (1 to 2%), termed '%pG is- 
lands," that are not CpG-depleted. These are 
rigorously protected from methylation and 
are associated with the transcription start 
sites in almost half, or some 40,000, human 
genes (4) .  

What is the Dumse of this division of the 
genome? ~ ~ ~ ~ m e k ~ l a t i o n  patterns closely 
correlate with patterns of gene expression. 
Heavily methylated DNA is generally associ- 
ated with chromatin organization that is in- 
hibitory to transcription (3). In humans, 
such repressed DNA often contains highly 
repeated sequences; methylation may help 
guard against transcriptional expression of 
these "parasitic" regions, which were intro- 
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duced into the genome over evolution by 
transposable elements and DNA viruses (5). 
In contrast, the unmethylated CpG islands 
of most genes are associated with chromatin 
typical of highly transcribed DNA (3). But 
selected CpG islands are densely methy- 
lated. These regions have chromatin confor- 
mation typical of nontranscribed DNA and 
represent silenced alleles for mono-allelically 
expressed or "imprinted genes"' (6) and for 
many genes on the transcriptionally inacti- 
vated X chromosome of the female (3). 

unmethylated CpG islands in the promoter 
region of critical genes can become densely 
methylated, and t h e  assqciated transcrip- 
tional silencing is an epigenetic alternative 
to coding region mutations for causing loss of 
tumor suppressor gene function (9). Indeed, 
almost half of the sumressor eenes known to - - - 
underlie genetic forms of neoplasia-includ- 
heVHLand~16 (1 2bwhenmutated in the 

line eihibit C ~ G  island hypermeth- 
ylation in noninherited cancers. 

What do the new findings of Chuang et al. 
reflect about DNA methylation? One mys- 
tery has been how DNA-MCMT activity is 
coordinated with DNA replication to main- 
tain both normal and abnormal DNA me- 
thylation patterns. This enzyme, conserved 
from sea urchin to human (1 3), preferen- 
tially methylates DNA that is already methy- 
lated on one strand. Thus, during DNA rep- 
lication, DNA-MCMT recognizes methy- 
lated CpG sites on the parent strand and 
methylates correlating cytosines on the 
daughter strand (1 3). Chuang et al. now sug- 

Proposed control of DNA methylation. In normal cells, the p21 protein negatively regulates tar- 
geting of DNA-MCMT to PCNA, primarily in early S phase, and protects CpG islands from methyla- 
tion. Diminished effects of p21 in late S phase may target DNA-MCMT to methylated DNA. Other 
local regulators of methylation help block methylation of CpG islands in early S (symbol with ?) and 
facilitate interaction of DNA-MCMT with heavily methylated late-replicating DNA (symbol with ?). In 
cancer cells, loss of p21 function allows increased DNA-MCMT more access, via PCNA, to DNA 
replication foci, possibly facilitating aberrant methylation of CpG islands. Decreased relative tar- 
geting to late S phase foci results in lost sites of normal methylation. Also, decreased activity of 
early S phase negative modulators of methylation and of late S phase positive regulators (symbol 
with ?) may facilitate the aberrant methylation patterns. 

These normally silenced alleles can be ex- 
pressed, and their CpG islands unmethylated, 
in mouse embryos with homozygous dele- 
tions of the DNA-methyltransferase (DNA- 
MCMT) gene, which encodes the major 
DNA-methylating enzyme (7). The methyl- 
ation patterns generated by this enzyme are 
essential, because these mice die in early 
embryogenesis (8). 

Cancer cells show altered patterns of 
DNA methylation (9). Overall DNA me- 
thylation is often decreased (10). This 
change may contribute to genomic instabil- 
ity (1 1 ). In these same tumors, the normally 

gest that binding of the enzyme to a protein, 
proliferating cell nuclear antigen (PCNA), 
coordinates DNA-MCMT activity and 
DNA replication and that this step is nega- 
tively regulated by the protein p21. 

PCNA facilitates DNA replication by 
loading delta and epsilon DNA polyrnerases 
onto DNA in cycling cells and during DNA 
repair (14). In intact cells, DNA-MCMT 
and PCNA were found by Chuang et al. to 
colocalize to DNA replication foci in early S 
phase, the cycle period for DNA synthesis. 
Such complexes are absent in GI, which pre- 
cedes the onset of DNA synthesis. p21 could 
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